1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
// 
// 
// 

#include "driver_5525DSO.h"


/**
 * \brief   Init pressure sensor TE 5525DSO
 * 
 * The driver initialize the sensor and download the calibration table
 * via I2C.
 * 
 * Calibration table is stored in the driver
 * 
 * The driver print the calibration table
 * 
 * \param device            Name of the I2C device
 * \param model             Model of the sensor
 * \param ps_resolution     Resolution
 * \param handle            Handle to the DriverContext class
 * \return                  true if sensor is initialized correctly
 */
bool Sensor5525DSO::Init(t_i2cdevices device, t_ps_sensor model, t_ps_resolution ps_resolution, void* handle)
{
    //Copy device contex and extract pointer to DebugClass and Hardware Class
    DriverContext* dc;
    dc = (DriverContext*)handle;
    hwi = (HW*)dc->hwi;
    dbg = (DebugIfaceClass*)dc->dbg;
    i2c_device = device;
    sensor_model = model;
    sensor_resolution = ps_resolution;

    //Download calibration table from sensor
    _initialized = false;
    bool bres = true;
    uint8_t wbuffer[6];
    uint8_t rbuffer[6];
    dbg->DbgPrint(DBG_KERNEL, DBG_INFO, "Starting 5525DSO Initialization... ");

    //Reset Senspr
    Reset_5525DSO();
    hwi->__delay_blocking_ms(100);

    //Read Calibration Table
    for (int i = 0; i < 6; i++) {
        wbuffer[0] = 0xA0 + ((i + 1) << 1);
        bres = hwi->I2CRead(i2c_device, wbuffer, 1, rbuffer, 2, true);
        if (!bres) return false;
        sensorCT.C[i] = (rbuffer[0] << 8) + rbuffer[1];
    }
    sensorCT.ZERO = 0;

    //Select coefficient in function of model
    switch (sensor_model) {
        case DS_01:
            sensorCT.Q[0] = 15;
            sensorCT.Q[1] = 17;
            sensorCT.Q[2] = 7;
            sensorCT.Q[3] = 5;
            sensorCT.Q[4] = 7;
            sensorCT.Q[5] = 21;
            break;

        case GS_05:
            sensorCT.Q[0] = 16;
            sensorCT.Q[1] = 17;
            sensorCT.Q[2] = 6;
            sensorCT.Q[3] = 5;
            sensorCT.Q[4] = 7;
            sensorCT.Q[5] = 21;
            break;
    }

    dbg->DbgPrint(DBG_KERNEL, DBG_INFO, "SENS_T1:          " + String(sensorCT.C[0]));
    dbg->DbgPrint(DBG_KERNEL, DBG_INFO, "OFF_T1:           " + String(sensorCT.C[1]));
    dbg->DbgPrint(DBG_KERNEL, DBG_INFO, "TCS:              " + String(sensorCT.C[2]));
    dbg->DbgPrint(DBG_KERNEL, DBG_INFO, "TCO:              " + String(sensorCT.C[3]));
    dbg->DbgPrint(DBG_KERNEL, DBG_INFO, "TREF:             " + String(sensorCT.C[4]));
    dbg->DbgPrint(DBG_KERNEL, DBG_INFO, "TEMPSENS:         " + String(sensorCT.C[5]));

    //Initialize default parameters
    //We need a cache for P and T because we
    //read T only few time in order to reduce
    //bus access
    __last_is_T=false;
    __chache_P=0;
    __chache_T=0;
    __TDiv=0;
    __pending_meas = false;

    startup_counter = 1;
    data_valid = false;
    _initialized = true;
    __last_millis = hwi->GetMillis();
    return true;
}

/**
 * \brief   Perform a full measure in blocking mode
 * 
 * \param P     measured P in mbar
 * \param T     measured T in °C
 * \return      true if success
 */
bool Sensor5525DSO::doMeasure(float* P, float* T)
{
    bool bres = true;
    uint8_t wbuffer[6];
    uint8_t rbuffer[6];
    int32_t pressure_raw;
    int32_t temperature_raw;

    if (!_initialized) return false;
    //Read raw pressure
    wbuffer[0] = GetResolutionByteCodePressure();
    bres = hwi->I2CWrite(i2c_device, wbuffer, 1, true);
    if (!bres) return false;
    hwi->__delay_blocking_ms(GetResolutionDelay()*2);

    wbuffer[0] = 0x00;
    bres = hwi->I2CWrite(i2c_device, wbuffer, 1, true);
    if (!bres) return false;

    hwi->__delay_blocking_ms(2);

    bres = hwi->I2CRead(i2c_device, rbuffer, 3, true);
    if (!bres) return false;
  
    pressure_raw = (rbuffer[0] << 16) + (rbuffer[1] << 8) + rbuffer[2];

    //Read raw temperature
    wbuffer[0] = GetResolutionByteCodeTemp();
    bres = hwi->I2CWrite(i2c_device, wbuffer, 1, true);
    if (!bres) return false;
    hwi->__delay_blocking_ms(GetResolutionDelay()*2);

    wbuffer[0] = 0x00;
    bres = hwi->I2CWrite(i2c_device, wbuffer, 1, true);
    if (!bres) return false;

    hwi->__delay_blocking_ms(2);

    bres = hwi->I2CRead(i2c_device, rbuffer, 3, true);
    if (!bres) return false;

    temperature_raw = (rbuffer[0] << 16) + (rbuffer[1] << 8) + rbuffer[2];

    //Convert raw in P,T
    CalibrateDate_5525DSO(temperature_raw, pressure_raw, T, P);

    dbg->DbgPrint(DBG_KERNEL, DBG_INFO, "T:  " + String(*T) + "   P:  " + String(*P));


    return true;
}

/**
 * \brief   Start an asynchronous measure process (NON BLOKING)
 * 
 * This function start the measure process for P/T (alternating
 * in internally managed) and start measure timer in order to 
 * correctly delay the end of measure
 * 
 * \return  true if success, false if measure is in progress
 */
bool Sensor5525DSO::asyncMeasure()
{
    bool bres = true;
    uint8_t wbuffer[6];

    if (!_initialized) return false;
    
    //Check if there is a measure pending, if yes return
    if (__pending_meas)
        return false;

    //Every 50 cycles read temperature 
    if (__TDiv <= 0)
    {
        __TDiv = 50;
        wbuffer[0] = GetResolutionByteCodeTemp();
        bres = hwi->I2CWrite(i2c_device, wbuffer, 1, true);
        if (!bres) return false;
        __last_is_T = true;
    }
    else
    {
        __TDiv--;
        wbuffer[0] = GetResolutionByteCodePressure();
        bres = hwi->I2CWrite(i2c_device, wbuffer, 1, true);
        if (!bres) return false;
        __last_is_T = false;
    }
    __last_millis = hwi->GetMillis();
    __pending_meas = true;
    return true;
}

/**
 * \brief   Get result from an NON BLOCKING measure process
 * 
 * This function must be polled after asyncMeasure is called
 * When conversion process ends the function return true
 * 
 * \param P     OUT pressure
 * \param T     OUT T
 * \return      true readout success, false measure not available
 */
bool Sensor5525DSO::asyncGetResult(float* P, float* T)
{
    bool bres = true;
    uint8_t wbuffer[6];
    uint8_t rbuffer[6];
    int32_t pressure_raw;
    int32_t temperature_raw;

    if (!_initialized) return false;

    //Check if there is a measure pending, if no return
    if (!__pending_meas)
        return false;

    //Check if conversion time is expired
    if (hwi->Get_dT_millis(__last_millis) < GetResolutionDelay())
        return false;

    __pending_meas = false;

    //Start readout process
    wbuffer[0] = 0x00;
    bres = hwi->I2CWrite(i2c_device, wbuffer, 1, true);
    if (!bres) return false;
    hwi->__delay_blocking_ms(2);
    bres = hwi->I2CRead(i2c_device, rbuffer, 3, true);
    if (!bres) return false;

    //Get P or T and use opposite (not read value) from cache
    //Then convert raw to P,T
    if (__last_is_T)
    {
        temperature_raw = (rbuffer[0] << 16) + (rbuffer[1] << 8) + rbuffer[2];
        __chache_T = temperature_raw;
        CalibrateDate_5525DSO(__chache_T, __chache_P, T, P);
    }
    else
    {
        pressure_raw = (rbuffer[0] << 16) + (rbuffer[1] << 8) + rbuffer[2];
        __chache_P = pressure_raw;
        CalibrateDate_5525DSO(__chache_T, __chache_P, T, P);
    }

    //Discard data on startup
    if (startup_counter > 0)
    {
        startup_counter--;
    }
    else
    {
        data_valid = true;
    }
    
    return data_valid;
}

/**
 * \brief   Convert row measure in P/V
 * 
 * \param raw_temp      raw temperature measured
 * \param raw_pressure  raw pressure measured
 * \param T             OUT Temperature
 * \param P             OUT Pressure
 */
void Sensor5525DSO::CalibrateDate_5525DSO(int32_t raw_temp, int32_t raw_pressure, float* T, float* P)
{
    float PINSIDE, PINSIDE_ZERO;
    int32_t Q1 = sensorCT.Q[0];
    int32_t Q2 = sensorCT.Q[1];
    int32_t Q3 = sensorCT.Q[2];
    int32_t Q4 = sensorCT.Q[3];
    int32_t Q5 = sensorCT.Q[4];
    int32_t Q6 = sensorCT.Q[5];

    int32_t C1 = sensorCT.C[0];
    int32_t C2 = sensorCT.C[1];
    int32_t C3 = sensorCT.C[2];
    int32_t C4 = sensorCT.C[3];
    int32_t C5 = sensorCT.C[4];
    int32_t C6 = sensorCT.C[5];

    int32_t dT;
    int64_t OFF;
    int64_t SENS;

    int32_t Temp;
    int64_t Pres;

    dT = raw_temp - (C5 * pow(2, Q5));
    Temp = 2000 + ((dT * C6) / pow(2, Q6));
    OFF = (C2 * pow(2, Q2)) + ((C4 * dT) / (pow(2, Q4)));
    SENS = (C1 * pow(2, Q1)) + ((C3 * dT) / (pow(2, Q3)));
    Pres = (((raw_pressure * SENS) / (pow(2, 21))) - OFF) / (pow(2, 15));

    *T = ((float)Temp) / 100.0;
    PINSIDE = ((float)Pres) / 10000.0 * 68.9476;
    PINSIDE_ZERO = PINSIDE - sensorCT.ZERO;
   //     Serial.println("DBG; " + String(PINSIDE) + " " + String(sensorCT.ZERO) + " " + String(PINSIDE_ZERO));
    *P = PINSIDE_ZERO;
}

/**
 * \brief   Obtain the conversion code for T for specified resolution
 * 
 * \return  Conversion Code
 */
uint8_t Sensor5525DSO::GetResolutionByteCodeTemp()
{
    switch (sensor_resolution)       //ERRORE DEVE ESSERE ps_resolution
    {
    case OVS_256:
        return 0x50;
    case OVS_512:
        return 0x52;
    case OVS_1024:
        return 0x54;
    case OVS_2048:
        return 0x56;
    case OVS_4096:
        return 0x58;
    default:
        break;
    }
}

/**
 * \brief   Obtain the conversion code for P for specified resolution
 *
 * \return  Conversion Code
 */
uint8_t Sensor5525DSO::GetResolutionByteCodePressure()
{
    switch (sensor_resolution)       //ERRORE DEVE ESSERE ps_resolution
    {
    case OVS_256:
        return 0x40;
    case OVS_512:
        return 0x42;
    case OVS_1024:
        return 0x44;
    case OVS_2048:
        return 0x46;
    case OVS_4096:
        return 0x48;
    default:
        break;
    }
}


/**
 * \brief   Obtain the conversion time for specified resolution
 *
 * \return  Conversion Code
 */
uint32_t Sensor5525DSO::GetResolutionDelay()
{
    switch (sensor_resolution)       //ERRORE DEVE ESSERE ps_resolution
    {
    case OVS_256:
        return 1;
    case OVS_512:
        return 2;
    case OVS_1024:
        return 3;
    case OVS_2048:
        return 4.9;
    case OVS_4096:
        return 11;
    default:
        break;
    }
}

/**
 * \brief   Reset the sensor
 * 
 * \return  true if sensor is present
 */
bool Sensor5525DSO::Reset_5525DSO()
{
    bool bres = true;
    uint8_t wbuffer[6];

    //Read raw pressure
    wbuffer[0] = 0x1E;
    bres = hwi->I2CWrite(i2c_device, wbuffer, 1, true);
    if (!bres) return false;

  
    return true;
}

/**
 * \brief   Calibrate sensor zero with a specified value
 * 
 * \param value     Value used to zero sensor
 */
void Sensor5525DSO::setZero(float value)
{
    sensorCT.ZERO = value;
}


/**
 * \brief   Calculate sensor zero
 * 
 * The function average 50 measure to extract the 0
 * 
 * \return 
 */
float Sensor5525DSO::doZero()
{
    float T, P;
    float value=0;
    float cnt = 0;
    sensorCT.ZERO = 0;
    doMeasure(&P, &T);

    for (int i = 0; i < 50; i++)
    {
        
        if (doMeasure(&P, &T))
        {
            value += P;
            cnt++;
        }

    }
    if (cnt > 0)
    {
        value = value / cnt;
    }
    sensorCT.ZERO = value;
    doMeasure(&P, &T);
    return value;
}


/**
 * \brief   Incremental 0 correction for Venturi cycle to cycle adjust
 * 
 * \param value     Incremental correction
 */
void Sensor5525DSO::correctZero(float value)
{
    sensorCT.ZERO += value;
}

/**
 * \brief   Return correction delay
 * 
 * \return  Delay in ms
 */
float Sensor5525DSO::GetConversionDelay()<--- The function 'GetConversionDelay' is never used.
{
    return (float) GetResolutionDelay();
}

//                  #     # ### 
//                  ##    #  #  
//                  # #   #  #  
//                  #  #  #  #  
//                  #   # #  #  
//                  #    ##  #  
//                  #     # ### 
//
// Nuclear Instruments 2020 - All rights reserved
// Any commercial use of this code is forbidden
// Contact info@nuclearinstruments.eu