Using as

The GNU Assembler

January 1994

Dean Elsner, Jay Fenlason & friends


The Free Software Foundation Inc. thanks The Nice Computer Company of Australia for loaning Dean Elsner to write the first (Vax) version of as for Project GNU. The proprietors, management and staff of TNCCA thank FSF for distracting the boss while they got some work done.

Copyright (C) 1991, 92, 93, 94, 95, 1996 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions.

Overview

This manual is a user guide to the GNU assembler as.

Here is a brief summary of how to invoke as. For details, see section Command-Line Options.

as [ -a[dhlns][=file] ] [ -D ]  [ --defsym sym=val ]
 [ -f ] [ --help ] [ -I dir ] [ -J ] [ -K ] [ -L ]
 [ -o objfile ] [ -R ] [ --statistics ] [ -v ] [ -version ]
 [ --version ] [ -W ] [ -w ] [ -x ] [ -Z ]
 [ -Av6 | -Av7 | -Av8 | -Asparclite | -Av9 | -Av9a ]
 [ -xarch=v8plus | -xarch=v8plusa ] [ -bump ]
 [ -ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC ]
 [ -b ] [ -no-relax ]
 [ -nocpp ] [ -EL ] [ -EB ] [ -G num ] [ -mcpu=CPU ]
 [ -mips1 ] [ -mips2 ] [ -mips3 ] [ -m4650 ] [ -no-m4650 ]
 [ --trap ] [ --break ]
 [ --emulation=name ]
 [ -mpwrx ] [ -mpwr2 ] [ -mpwr ] [ -m601 ]
 [ -mppc | -mppc32 | -m403 | -m603 | -m604 ]
 [ -mppc64 | -m620 ] [ -mcom ] [ -many ]
 [ -mregnames ] [ -mno-regnames ] 
 [ -mrelocatable ] [ -mrelocatable-lib ] [ -memb ]
 [ -mlittle | -mlittle-endian ] [ -mbig | -mbig-endian ]
 [ -- | files ... ]
-a[dhlns]
Turn on listings, in any of a variety of ways:
-ad
omit debugging directives
-ah
include high-level source
-al
include assembly
-an
omit forms processing
-as
include symbols
=file
set the name of the listing file
You may combine these options; for example, use `-aln' for assembly listing without forms processing. The `=file' option, if used, must be the last one. By itself, `-a' defaults to `-ahls'---that is, all listings turned on.
-D
Ignored. This option is accepted for script compatibility with calls to other assemblers.
--defsym sym=value
Define the symbol sym to be value before assembling the input file. value must be an integer constant. As in C, a leading `0x' indicates a hexadecimal value, and a leading `0' indicates an octal value.
-f
"fast"---skip whitespace and comment preprocessing (assume source is compiler output).
--help
Print a summary of the command line options and exit.
-I dir
Add directory dir to the search list for .include directives.
-J
Don't warn about signed overflow.
-K
Issue warnings when difference tables altered for long displacements.
-L
Keep (in the symbol table) local symbols, starting with `L'.
-o objfile
Name the object-file output from as objfile.
-R
Fold the data section into the text section.
--statistics
Print the maximum space (in bytes) and total time (in seconds) used by assembly.
-v
-version
Print the as version.
--version
Print the as version and exit.
-W
Suppress warning messages.
-w
Ignored.
-x
Ignored.
-Z
Generate an object file even after errors.
-- | files ...
Standard input, or source files to assemble.

The following options are available when as is configured for the Intel 80960 processor.

-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Specify which variant of the 960 architecture is the target.
-b
Add code to collect statistics about branches taken.
-no-relax
Do not alter compare-and-branch instructions for long displacements; error if necessary.

The following options are available when as is configured for the SPARC architecture:

-Av6 | -Av7 | -Av8 | -Asparclite | -Av9 | -Av9a
Explicitly select a variant of the SPARC architecture.
-xarch=v8plus | -xarch=v8plusa
For compatibility with the Solaris v9 assembler. These options are equivalent to -Av9 and -Av9a, respectively.
-bump
Warn when the assembler switches to another architecture.

The following options are available when as is configured for a MIPS processor.

-G num
This option sets the largest size of an object that can be referenced implicitly with the gp register. It is only accepted for targets that use ECOFF format, such as a DECstation running Ultrix. The default value is 8.
-EB
Generate "big endian" format output.
-EL
Generate "little endian" format output.
-mips1
-mips2
-mips3
Generate code for a particular MIPS Instruction Set Architecture level. `-mips1' corresponds to the R2000 and R3000 processors, `-mips2' to the R6000 processor, and `-mips3' to the R4000 processor.
-m4650
-no-m4650
Generate code for the MIPS R4650 chip. This tells the assembler to accept the `mad' and `madu' instruction, and to not schedule `nop' instructions around accesses to the `HI' and `LO' registers. `-no-m4650' turns off this option.
-mcpu=CPU
Generate code for a particular MIPS cpu. This has little effect on the assembler, but it is passed by gcc.
--emulation=name
This option causes as to emulated as configured for some other target, in all respects, including output format (choosing between ELF and ECOFF only), handling of pseudo-opcodes which may generate debugging information or store symbol table information, and default endianness. The available configuration names are: `mipsecoff', `mipself', `mipslecoff', `mipsbecoff', `mipslelf', `mipsbelf'. The first two do not alter the default endianness from that of the primary target for which the assembler was configured; the others change the default to little- or big-endian as indicated by the `b' or `l' in the name. Using `-EB' or `-EL' will override the endianness selection in any case. This option is currently supported only when the primary target as is configured for is a MIPS ELF or ECOFF target. Furthermore, the primary target or others specified with `--enable-targets=...' at configuration time must include support for the other format, if both are to be available. For example, the Irix 5 configuration includes support for both. Eventually, this option will support more configurations, with more fine-grained control over the assembler's behavior, and will be supported for more processors.
-nocpp
as ignores this option. It is accepted for compatibility with the native tools.
--trap
--no-trap
--break
--no-break
Control how to deal with multiplication overflow and division by zero. `--trap' or `--no-break' (which are synonyms) take a trap exception (and only work for Instruction Set Architecture level 2 and higher); `--break' or `--no-trap' (also synonyms, and the default) take a break exception.

Structure of this Manual

This manual is intended to describe what you need to know to use GNU as. We cover the syntax expected in source files, including notation for symbols, constants, and expressions; the directives that as understands; and of course how to invoke as.

This manual also describes some of the machine-dependent features of various flavors of the assembler.

On the other hand, this manual is not intended as an introduction to programming in assembly language--let alone programming in general! In a similar vein, we make no attempt to introduce the machine architecture; we do not describe the instruction set, standard mnemonics, registers or addressing modes that are standard to a particular architecture. You may want to consult the manufacturer's machine architecture manual for this information.

as, the GNU Assembler

GNU as is really a family of assemblers. If you use (or have used) the GNU assembler on one architecture, you should find a fairly similar environment when you use it on another architecture. Each version has much in common with the others, including object file formats, most assembler directives (often called pseudo-ops) and assembler syntax.

as is primarily intended to assemble the output of the GNU C compiler gcc for use by the linker ld. Nevertheless, we've tried to make as assemble correctly everything that other assemblers for the same machine would assemble.

Unlike older assemblers, as is designed to assemble a source program in one pass of the source file. This has a subtle impact on the .org directive (see section .org new-lc , fill).

Object File Formats

The GNU assembler can be configured to produce several alternative object file formats. For the most part, this does not affect how you write assembly language programs; but directives for debugging symbols are typically different in different file formats. See section Symbol Attributes. On the machine specific, as can be configured to produce either b.out or COFF format object files. On the machine specific, as can be configured to produce either SOM or ELF format object files.

Command Line

After the program name as, the command line may contain options and file names. Options may appear in any order, and may be before, after, or between file names. The order of file names is significant.

`--' (two hyphens) by itself names the standard input file explicitly, as one of the files for as to assemble.

Except for `--' any command line argument that begins with a hyphen (`-') is an option. Each option changes the behavior of as. No option changes the way another option works. An option is a `-' followed by one or more letters; the case of the letter is important. All options are optional.

Some options expect exactly one file name to follow them. The file name may either immediately follow the option's letter (compatible with older assemblers) or it may be the next command argument (GNU standard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as -omy-object-file.o mumble.s

Input Files

We use the phrase source program, abbreviated source, to describe the program input to one run of as. The program may be in one or more files; how the source is partitioned into files doesn't change the meaning of the source.

The source program is a concatenation of the text in all the files, in the order specified.

Each time you run as it assembles exactly one source program. The source program is made up of one or more files. (The standard input is also a file.)

You give as a command line that has zero or more input file names. The input files are read (from left file name to right). A command line argument (in any position) that has no special meaning is taken to be an input file name.

If you give as no file names it attempts to read one input file from the as standard input, which is normally your terminal. You may have to type ctl-D to tell as there is no more program to assemble.

Use `--' if you need to explicitly name the standard input file in your command line.

If the source is empty, as produces a small, empty object file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files) and either may be used in reporting error messages. One way refers to a line number in a physical file; the other refers to a line number in a "logical" file. See section Error and Warning Messages.

Physical files are those files named in the command line given to as.

Logical files are simply names declared explicitly by assembler directives; they bear no relation to physical files. Logical file names help error messages reflect the original source file, when as source is itself synthesized from other files. See section .app-file string.

Output (Object) File

Every time you run as it produces an output file, which is your assembly language program translated into numbers. This file is the object file. Its default name is a.out, or b.out when as is configured for the Intel 80960. You can give it another name by using the -o option. Conventionally, object file names end with `.o'. The default name is used for historical reasons: older assemblers were capable of assembling self-contained programs directly into a runnable program. (For some formats, this isn't currently possible, but it can be done for the a.out format.)

The object file is meant for input to the linker ld. It contains assembled program code, information to help ld integrate the assembled program into a runnable file, and (optionally) symbolic information for the debugger.

Error and Warning Messages

as may write warnings and error messages to the standard error file (usually your terminal). This should not happen when a compiler runs as automatically. Warnings report an assumption made so that as could keep assembling a flawed program; errors report a grave problem that stops the assembly.

Warning messages have the format

file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given (see section .app-file string) it is used for the filename, otherwise the name of the current input file is used. If a logical line number was given (see section .line line-number) then it is used to calculate the number printed, otherwise the actual line in the current source file is printed. The message text is intended to be self explanatory (in the grand Unix tradition).

Error messages have the format

file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages. The actual message text may be rather less explanatory because many of them aren't supposed to happen.

Command-Line Options

This chapter describes command-line options available in all versions of the GNU assembler; see section Machine Dependent Features, for options specific to particular machine architectures.

If you are invoking as via the GNU C compiler (version 2), you can use the `-Wa' option to pass arguments through to the assembler. The assembler arguments must be separated from each other (and the `-Wa') by commas. For example:

gcc -c -g -O -Wa,-alh,-L file.c

emits a listing to standard output with high-level and assembly source.

Usually you do not need to use this `-Wa' mechanism, since many compiler command-line options are automatically passed to the assembler by the compiler. (You can call the GNU compiler driver with the `-v' option to see precisely what options it passes to each compilation pass, including the assembler.)

Enable Listings: -a[dhlns]

These options enable listing output from the assembler. By itself, `-a' requests high-level, assembly, and symbols listing. You can use other letters to select specific options for the list: `-ah' requests a high-level language listing, `-al' requests an output-program assembly listing, and `-as' requests a symbol table listing. High-level listings require that a compiler debugging option like `-g' be used, and that assembly listings (`-al') be requested also.

Use the `-ad' option to omit debugging directives from the listing.

Once you have specified one of these options, you can further control listing output and its appearance using the directives .list, .nolist, .psize, .eject, .title, and .sbttl. The `-an' option turns off all forms processing. If you do not request listing output with one of the `-a' options, the listing-control directives have no effect.

The letters after `-a' may be combined into one option, e.g., `-aln'.

-D

This option has no effect whatsoever, but it is accepted to make it more likely that scripts written for other assemblers also work with as.

Work Faster: -f

`-f' should only be used when assembling programs written by a (trusted) compiler. `-f' stops the assembler from doing whitespace and comment preprocessing on the input file(s) before assembling them. See section Preprocessing.

Warning: if you use `-f' when the files actually need to be preprocessed (if they contain comments, for example), as does not work correctly.

.include search path: -I path

Use this option to add a path to the list of directories as searches for files specified in .include directives (see section .include "file"). You may use -I as many times as necessary to include a variety of paths. The current working directory is always searched first; after that, as searches any `-I' directories in the same order as they were specified (left to right) on the command line.

Difference Tables: -K

as sometimes alters the code emitted for directives of the form `.word sym1-sym2'; see section .word expressions. You can use the `-K' option if you want a warning issued when this is done.

Include Local Labels: -L

Labels beginning with `L' (upper case only) are called local labels. See section Symbol Names. Normally you do not see such labels when debugging, because they are intended for the use of programs (like compilers) that compose assembler programs, not for your notice. Normally both as and ld discard such labels, so you do not normally debug with them.

This option tells as to retain those `L...' symbols in the object file. Usually if you do this you also tell the linker ld to preserve symbols whose names begin with `L'.

By default, a local label is any label beginning with `L', but each target is allowed to redefine the local label prefix. On the HPPA local labels begin with `L$'.

Assemble in MRI Compatibility Mode: -M

The -M or --mri option selects MRI compatibility mode. This changes the syntax and pseudo-op handling of as to make it compatible with the ASM68K or the ASM960 (depending upon the configured target) assembler from Microtec Research. The exact nature of the MRI syntax will not be documented here; see the MRI manuals for more information. The purpose of this option is to permit assembling existing MRI assembler code using as.

The MRI compatibility is not complete. Certain operations of the MRI assembler depend upon its object file format, and can not be supported using other object file formats. Supporting these would require enhancing each object file format individually. These are:

There are some other features of the MRI assembler which are not supported by as, typically either because they are difficult or because they seem of little consequence. Some of these may be supported in future releases.

Name the Object File: -o

There is always one object file output when you run as. By default it has the name `a.out' (or `b.out', for Intel 960 targets only). You use this option (which takes exactly one filename) to give the object file a different name.

Whatever the object file is called, as overwrites any existing file of the same name.

Join Data and Text Sections: -R

-R tells as to write the object file as if all data-section data lives in the text section. This is only done at the very last moment: your binary data are the same, but data section parts are relocated differently. The data section part of your object file is zero bytes long because all its bytes are appended to the text section. (See section Sections and Relocation.)

When you specify -R it would be possible to generate shorter address displacements (because we do not have to cross between text and data section). We refrain from doing this simply for compatibility with older versions of as. In future, -R may work this way.

When as is configured for COFF output, this option is only useful if you use sections named `.text' and `.data'.

-R is not supported for any of the HPPA targets. Using -R generates a warning from as.

Display Assembly Statistics: --statistics

Use `--statistics' to display two statistics about the resources used by as: the maximum amount of space allocated during the assembly (in bytes), and the total execution time taken for the assembly (in CPU seconds).

Announce Version: -v

You can find out what version of as is running by including the option `-v' (which you can also spell as `-version') on the command line.

Suppress Warnings: -W

as should never give a warning or error message when assembling compiler output. But programs written by people often cause as to give a warning that a particular assumption was made. All such warnings are directed to the standard error file. If you use this option, no warnings are issued. This option only affects the warning messages: it does not change any particular of how as assembles your file. Errors, which stop the assembly, are still reported.

Generate Object File in Spite of Errors: -Z

After an error message, as normally produces no output. If for some reason you are interested in object file output even after as gives an error message on your program, use the `-Z' option. If there are any errors, as continues anyways, and writes an object file after a final warning message of the form `n errors, m warnings, generating bad object file.'

Syntax

This chapter describes the machine-independent syntax allowed in a source file. as syntax is similar to what many other assemblers use; it is inspired by the BSD 4.2 assembler.

Preprocessing

The as internal preprocessor:

It does not do macro processing, include file handling, or anything else you may get from your C compiler's preprocessor. You can do include file processing with the .include directive (see section .include "file"). You can use the GNU C compiler driver to get other "CPP" style preprocessing, by giving the input file a `.S' suffix. See section `Options Controlling the Kind of Output' in Using GNU CC.

Excess whitespace, comments, and character constants cannot be used in the portions of the input text that are not preprocessed.

If the first line of an input file is #NO_APP or if you use the `-f' option, whitespace and comments are not removed from the input file. Within an input file, you can ask for whitespace and comment removal in specific portions of the by putting a line that says #APP before the text that may contain whitespace or comments, and putting a line that says #NO_APP after this text. This feature is mainly intend to support asm statements in compilers whose output is otherwise free of comments and whitespace.

Whitespace

Whitespace is one or more blanks or tabs, in any order. Whitespace is used to separate symbols, and to make programs neater for people to read. Unless within character constants (see section Character Constants), any whitespace means the same as exactly one space.

Comments

There are two ways of rendering comments to as. In both cases the comment is equivalent to one space.

Anything from `/*' through the next `*/' is a comment. This means you may not nest these comments.

/*
  The only way to include a newline ('\n') in a comment
  is to use this sort of comment.
*/

/* This sort of comment does not nest. */

Anything from the line comment character to the next newline is considered a comment and is ignored. The line comment character is `#' on the i960; `!' on the SPARC; `;' for the HPPA; `!' for the Z8000; see section Machine Dependent Features.

On some machines there are two different line comment characters. One character only begins a comment if it is the first non-whitespace character on a line, while the other always begins a comment.

To be compatible with past assemblers, lines that begin with `#' have a special interpretation. Following the `#' should be an absolute expression (see section Expressions): the logical line number of the next line. Then a string (see section Strings) is allowed: if present it is a new logical file name. The rest of the line, if any, should be whitespace.

If the first non-whitespace characters on the line are not numeric, the line is ignored. (Just like a comment.)

                          # This is an ordinary comment.
# 42-6 "new_file_name"    # New logical file name
                          # This is logical line # 36.

This feature is deprecated, and may disappear from future versions of as.

Symbols

A symbol is one or more characters chosen from the set of all letters (both upper and lower case), digits and the three characters `_.$'. On most machines, you can also use $ in symbol names; exceptions are noted in section Machine Dependent Features. No symbol may begin with a digit. Case is significant. There is no length limit: all characters are significant. Symbols are delimited by characters not in that set, or by the beginning of a file (since the source program must end with a newline, the end of a file is not a possible symbol delimiter). See section Symbols.

Statements

A statement ends at a newline character (`\n') or an exclamation point (`!'). The newline or exclamation point is considered part of the preceding statement. Newlines and exclamation points within character constants are an exception: they do not end statements. A statement ends at a newline character (`\n') or line separator character. (The line separator is usually `;', unless this conflicts with the comment character; see section Machine Dependent Features.) The newline or separator character is considered part of the preceding statement. Newlines and separators within character constants are an exception: they do not end statements.

It is an error to end any statement with end-of-file: the last character of any input file should be a newline.

You may write a statement on more than one line if you put a backslash (\) immediately in front of any newlines within the statement. When as reads a backslashed newline both characters are ignored. You can even put backslashed newlines in the middle of symbol names without changing the meaning of your source program.

An empty statement is allowed, and may include whitespace. It is ignored.

A statement begins with zero or more labels, optionally followed by a key symbol which determines what kind of statement it is. The key symbol determines the syntax of the rest of the statement. If the symbol begins with a dot `.' then the statement is an assembler directive: typically valid for any computer. If the symbol begins with a letter the statement is an assembly language instruction: it assembles into a machine language instruction. Different versions of as for different computers recognize different instructions. In fact, the same symbol may represent a different instruction in a different computer's assembly language.

A label is a symbol immediately followed by a colon (:). Whitespace before a label or after a colon is permitted, but you may not have whitespace between a label's symbol and its colon. See section Labels.

For HPPA targets, labels need not be immediately followed by a colon, but the definition of a label must begin in column zero. This also implies that only one label may be defined on each line.

label:     .directive    followed by something
another_label:           # This is an empty statement.
           instruction   operand_1, operand_2, ...

Constants

A constant is a number, written so that its value is known by inspection, without knowing any context. Like this:

.byte  74, 0112, 092, 0x4A, 0X4a, 'J, '\J # All the same value.
.ascii "Ring the bell\7"                  # A string constant.
.octa  0x123456789abcdef0123456789ABCDEF0 # A bignum.
.float 0f-314159265358979323846264338327\
95028841971.693993751E-40                 # - pi, a flonum.

Character Constants

There are two kinds of character constants. A character stands for one character in one byte and its value may be used in numeric expressions. String constants (properly called string literals) are potentially many bytes and their values may not be used in arithmetic expressions.

Strings

A string is written between double-quotes. It may contain double-quotes or null characters. The way to get special characters into a string is to escape these characters: precede them with a backslash `\' character. For example `\\' represents one backslash: the first \ is an escape which tells as to interpret the second character literally as a backslash (which prevents as from recognizing the second \ as an escape character). The complete list of escapes follows.

\b
Mnemonic for backspace; for ASCII this is octal code 010.
\f
Mnemonic for FormFeed; for ASCII this is octal code 014.
\n
Mnemonic for newline; for ASCII this is octal code 012.
\r
Mnemonic for carriage-Return; for ASCII this is octal code 015.
\t
Mnemonic for horizontal Tab; for ASCII this is octal code 011.
\ digit digit digit
An octal character code. The numeric code is 3 octal digits. For compatibility with other Unix systems, 8 and 9 are accepted as digits: for example, \008 has the value 010, and \009 the value 011.
\x hex-digit hex-digit
A hex character code. The numeric code is 2 hexadecimal digits. Either upper or lower case x works.
\\
Represents one `\' character.
\"
Represents one `"' character. Needed in strings to represent this character, because an unescaped `"' would end the string.
\ anything-else
Any other character when escaped by \ gives a warning, but assembles as if the `\' was not present. The idea is that if you used an escape sequence you clearly didn't want the literal interpretation of the following character. However as has no other interpretation, so as knows it is giving you the wrong code and warns you of the fact.

Which characters are escapable, and what those escapes represent, varies widely among assemblers. The current set is what we think the BSD 4.2 assembler recognizes, and is a subset of what most C compilers recognize. If you are in doubt, do not use an escape sequence.

Characters

A single character may be written as a single quote immediately followed by that character. The same escapes apply to characters as to strings. So if you want to write the character backslash, you must write '\\ where the first \ escapes the second \. As you can see, the quote is an acute accent, not a grave accent. A newline immediately following an acute accent is taken as a literal character and does not count as the end of a statement. The value of a character constant in a numeric expression is the machine's byte-wide code for that character. as assumes your character code is ASCII: 'A means 65, 'B means 66, and so on.

Number Constants

as distinguishes three kinds of numbers according to how they are stored in the target machine. Integers are numbers that would fit into an int in the C language. Bignums are integers, but they are stored in more than 32 bits. Flonums are floating point numbers, described below.

Integers

A binary integer is `0b' or `0B' followed by zero or more of the binary digits `01'.

An octal integer is `0' followed by zero or more of the octal digits (`01234567').

A decimal integer starts with a non-zero digit followed by zero or more digits (`0123456789').

A hexadecimal integer is `0x' or `0X' followed by one or more hexadecimal digits chosen from `0123456789abcdefABCDEF'.

Integers have the usual values. To denote a negative integer, use the prefix operator `-' discussed under expressions (see section Prefix Operator).

Bignums

A bignum has the same syntax and semantics as an integer except that the number (or its negative) takes more than 32 bits to represent in binary. The distinction is made because in some places integers are permitted while bignums are not.

Flonums

A flonum represents a floating point number. The translation is indirect: a decimal floating point number from the text is converted by as to a generic binary floating point number of more than sufficient precision. This generic floating point number is converted to a particular computer's floating point format (or formats) by a portion of as specialized to that computer.

A flonum is written by writing (in order)

At least one of the integer part or the fractional part must be present. The floating point number has the usual base-10 value.

as does all processing using integers. Flonums are computed independently of any floating point hardware in the computer running as.

Sections and Relocation

Background

Roughly, a section is a range of addresses, with no gaps; all data "in" those addresses is treated the same for some particular purpose. For example there may be a "read only" section.

The linker ld reads many object files (partial programs) and combines their contents to form a runnable program. When as emits an object file, the partial program is assumed to start at address 0. ld assigns the final addresses for the partial program, so that different partial programs do not overlap. This is actually an oversimplification, but it suffices to explain how as uses sections.

ld moves blocks of bytes of your program to their run-time addresses. These blocks slide to their run-time addresses as rigid units; their length does not change and neither does the order of bytes within them. Such a rigid unit is called a section. Assigning run-time addresses to sections is called relocation. It includes the task of adjusting mentions of object-file addresses so they refer to the proper run-time addresses.

An object file written by as has at least three sections, any of which may be empty. These are named text, data and bss sections.

When it generates COFF output, as can also generate whatever other named sections you specify using the `.section' directive (see section .section name, subsection). If you do not use any directives that place output in the `.text' or `.data' sections, these sections still exist, but are empty.

When as generates SOM or ELF output for the HPPA, as can also generate whatever other named sections you specify using the `.space' and `.subspace' directives. See HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001) for details on the `.space' and `.subspace' assembler directives.

Additionally, as uses different names for the standard text, data, and bss sections when generating SOM output. Program text is placed into the `$CODE$' section, data into `$DATA$', and BSS into `$BSS$'.

Within the object file, the text section starts at address 0, the data section follows, and the bss section follows the data section.

When generating either SOM or ELF output files on the HPPA, the text section starts at address 0, the data section at address 0x4000000, and the bss section follows the data section.

To let ld know which data changes when the sections are relocated, and how to change that data, as also writes to the object file details of the relocation needed. To perform relocation ld must know, each time an address in the object file is mentioned:

In fact, every address as ever uses is expressed as

(section) + (offset into section)

Further, most expressions as computes have this section-relative nature. (For some object formats, such as SOM for the HPPA, some expressions are symbol-relative instead.)

In this manual we use the notation {secname N} to mean "offset N into section secname."

Apart from text, data and bss sections you need to know about the absolute section. When ld mixes partial programs, addresses in the absolute section remain unchanged. For example, address {absolute 0} is "relocated" to run-time address 0 by ld. Although the linker never arranges two partial programs' data sections with overlapping addresses after linking, by definition their absolute sections must overlap. Address {absolute 239} in one part of a program is always the same address when the program is running as address {absolute 239} in any other part of the program.

The idea of sections is extended to the undefined section. Any address whose section is unknown at assembly time is by definition rendered {undefined U}---where U is filled in later. Since numbers are always defined, the only way to generate an undefined address is to mention an undefined symbol. A reference to a named common block would be such a symbol: its value is unknown at assembly time so it has section undefined.

By analogy the word section is used to describe groups of sections in the linked program. ld puts all partial programs' text sections in contiguous addresses in the linked program. It is customary to refer to the text section of a program, meaning all the addresses of all partial programs' text sections. Likewise for data and bss sections.

Some sections are manipulated by ld; others are invented for use of as and have no meaning except during assembly.

ld Sections

ld deals with just four kinds of sections, summarized below.

named sections
text section
data section
These sections hold your program. as and ld treat them as separate but equal sections. Anything you can say of one section is true another. When the program is running, however, it is customary for the text section to be unalterable. The text section is often shared among processes: it contains instructions, constants and the like. The data section of a running program is usually alterable: for example, C variables would be stored in the data section.
bss section
This section contains zeroed bytes when your program begins running. It is used to hold unitialized variables or common storage. The length of each partial program's bss section is important, but because it starts out containing zeroed bytes there is no need to store explicit zero bytes in the object file. The bss section was invented to eliminate those explicit zeros from object files.
absolute section
Address 0 of this section is always "relocated" to runtime address 0. This is useful if you want to refer to an address that ld must not change when relocating. In this sense we speak of absolute addresses being "unrelocatable": they do not change during relocation.
undefined section
This "section" is a catch-all for address references to objects not in the preceding sections.

An idealized example of three relocatable sections follows. The example uses the traditional section names `.text' and `.data'. Memory addresses are on the horizontal axis.

as Internal Sections

These sections are meant only for the internal use of as. They have no meaning at run-time. You do not really need to know about these sections for most purposes; but they can be mentioned in as warning messages, so it might be helpful to have an idea of their meanings to as. These sections are used to permit the value of every expression in your assembly language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means there is a bug in the assembler.
expr section
The assembler stores complex expression internally as combinations of symbols. When it needs to represent an expression as a symbol, it puts it in the expr section.

Sub-Sections

Assembled bytes conventionally fall into two sections: text and data. You may have separate groups of data in named sections text or data that you want to end up near to each other in the object file, even though they are not contiguous in the assembler source. as allows you to use subsections for this purpose. Within each section, there can be numbered subsections with values from 0 to 8192. Objects assembled into the same subsection go into the object file together with other objects in the same subsection. For example, a compiler might want to store constants in the text section, but might not want to have them interspersed with the program being assembled. In this case, the compiler could issue a `.text 0' before each section of code being output, and a `.text 1' before each group of constants being output.

Subsections are optional. If you do not use subsections, everything goes in subsection number zero.

Each subsection is zero-padded up to a multiple of four bytes. (Subsections may be padded a different amount on different flavors of as.)

Subsections appear in your object file in numeric order, lowest numbered to highest. (All this to be compatible with other people's assemblers.) The object file contains no representation of subsections; ld and other programs that manipulate object files see no trace of them. They just see all your text subsections as a text section, and all your data subsections as a data section.

To specify which subsection you want subsequent statements assembled into, use a numeric argument to specify it, in a `.text expression' or a `.data expression' statement. When generating COFF output, you can also use an extra subsection argument with arbitrary named sections: `.section name, expression'. Expression should be an absolute expression. (See section Expressions.) If you just say `.text' then `.text 0' is assumed. Likewise `.data' means `.data 0'. Assembly begins in text 0. For instance:

.text 0     # The default subsection is text 0 anyway.
.ascii "This lives in the first text subsection. *"
.text 1
.ascii "But this lives in the second text subsection."
.data 0
.ascii "This lives in the data section,"
.ascii "in the first data subsection."
.text 0
.ascii "This lives in the first text section,"
.ascii "immediately following the asterisk (*)."

Each section has a location counter incremented by one for every byte assembled into that section. Because subsections are merely a convenience restricted to as there is no concept of a subsection location counter. There is no way to directly manipulate a location counter--but the .align directive changes it, and any label definition captures its current value. The location counter of the section where statements are being assembled is said to be the active location counter.

bss Section

The bss section is used for local common variable storage. You may allocate address space in the bss section, but you may not dictate data to load into it before your program executes. When your program starts running, all the contents of the bss section are zeroed bytes.

Addresses in the bss section are allocated with special directives; you may not assemble anything directly into the bss section. Hence there are no bss subsections. See section .comm symbol , length , see section .lcomm symbol , length.

Symbols

Symbols are a central concept: the programmer uses symbols to name things, the linker uses symbols to link, and the debugger uses symbols to debug.

Warning: as does not place symbols in the object file in the same order they were declared. This may break some debuggers.

Labels

A label is written as a symbol immediately followed by a colon `:'. The symbol then represents the current value of the active location counter, and is, for example, a suitable instruction operand. You are warned if you use the same symbol to represent two different locations: the first definition overrides any other definitions.

On the HPPA, the usual form for a label need not be immediately followed by a colon, but instead must start in column zero. Only one label may be defined on a single line. To work around this, the HPPA version of as also provides a special directive .label for defining labels more flexibly.

Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equals sign `=', followed by an expression (see section Expressions). This is equivalent to using the .set directive. See section .set symbol, expression.

Symbol Names

Symbol names begin with a letter or with one of `._'. On most machines, you can also use $ in symbol names; exceptions are noted in section Machine Dependent Features. That character may be followed by any string of digits, letters, dollar signs (unless otherwise noted in section Machine Dependent Features), and underscores.

Case of letters is significant: foo is a different symbol name than Foo.

Each symbol has exactly one name. Each name in an assembly language program refers to exactly one symbol. You may use that symbol name any number of times in a program.

Local Symbol Names

Local symbols help compilers and programmers use names temporarily. There are ten local symbol names, which are re-used throughout the program. You may refer to them using the names `0' `1' ... `9'. To define a local symbol, write a label of the form `N:' (where N represents any digit). To refer to the most recent previous definition of that symbol write `Nb', using the same digit as when you defined the label. To refer to the next definition of a local label, write `Nf'---where N gives you a choice of 10 forward references. The `b' stands for "backwards" and the `f' stands for "forwards".

Local symbols are not emitted by the current GNU C compiler.

There is no restriction on how you can use these labels, but remember that at any point in the assembly you can refer to at most 10 prior local labels and to at most 10 forward local labels.

Local symbol names are only a notation device. They are immediately transformed into more conventional symbol names before the assembler uses them. The symbol names stored in the symbol table, appearing in error messages and optionally emitted to the object file have these parts:

L
All local labels begin with `L'. Normally both as and ld forget symbols that start with `L'. These labels are used for symbols you are never intended to see. If you use the `-L' option then as retains these symbols in the object file. If you also instruct ld to retain these symbols, you may use them in debugging.
digit
If the label is written `0:' then the digit is `0'. If the label is written `1:' then the digit is `1'. And so on up through `9:'.
^A
This unusual character is included so you do not accidentally invent a symbol of the same name. The character has ASCII value `\001'.
ordinal number
This is a serial number to keep the labels distinct. The first `0:' gets the number `1'; The 15th `0:' gets the number `15'; etc.. Likewise for the other labels `1:' through `9:'.

For instance, the first 1: is named L1^A1, the 44th 3: is named L3^A44.

The Special Dot Symbol

The special symbol `.' refers to the current address that as is assembling into. Thus, the expression `melvin: .long .' defines melvin to contain its own address. Assigning a value to . is treated the same as a .org directive. Thus, the expression `.=.+4' is the same as saying `.space 4'.

Symbol Attributes

Every symbol has, as well as its name, the attributes "Value" and "Type". Depending on output format, symbols can also have auxiliary attributes.

If you use a symbol without defining it, as assumes zero for all these attributes, and probably won't warn you. This makes the symbol an externally defined symbol, which is generally what you would want.

Value

The value of a symbol is (usually) 32 bits. For a symbol which labels a location in the text, data, bss or absolute sections the value is the number of addresses from the start of that section to the label. Naturally for text, data and bss sections the value of a symbol changes as ld changes section base addresses during linking. Absolute symbols' values do not change during linking: that is why they are called absolute.

The value of an undefined symbol is treated in a special way. If it is 0 then the symbol is not defined in this assembler source file, and ld tries to determine its value from other files linked into the same program. You make this kind of symbol simply by mentioning a symbol name without defining it. A non-zero value represents a .comm common declaration. The value is how much common storage to reserve, in bytes (addresses). The symbol refers to the first address of the allocated storage.

Type

The type attribute of a symbol contains relocation (section) information, any flag settings indicating that a symbol is external, and (optionally), other information for linkers and debuggers. The exact format depends on the object-code output format in use.

Symbol Attributes: a.out

Descriptor

This is an arbitrary 16-bit value. You may establish a symbol's descriptor value by using a .desc statement (see section .desc symbol, abs-expression). A descriptor value means nothing to as.

Other

This is an arbitrary 8-bit value. It means nothing to as.

Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes; like the primary symbol attributes, they are set between .def and .endef directives.

Primary Attributes

The symbol name is set with .def; the value and type, respectively, with .val and .type.

Auxiliary Attributes

The as directives .dim, .line, .scl, .size, and .tag can generate auxiliary symbol table information for COFF.

Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol attributes set with the .EXPORT and .IMPORT directives.

The attributes are described in HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001) under the IMPORT and EXPORT assembler directive documentation.

Expressions

An expression specifies an address or numeric value. Whitespace may precede and/or follow an expression.

The result of an expression must be an absolute number, or else an offset into a particular section. If an expression is not absolute, and there is not enough information when as sees the expression to know its section, a second pass over the source program might be necessary to interpret the expression--but the second pass is currently not implemented. as aborts with an error message in this situation.

Empty Expressions

An empty expression has no value: it is just whitespace or null. Wherever an absolute expression is required, you may omit the expression, and as assumes a value of (absolute) 0. This is compatible with other assemblers.

Integer Expressions

An integer expression is one or more arguments delimited by operators.

Arguments

Arguments are symbols, numbers or subexpressions. In other contexts arguments are sometimes called "arithmetic operands". In this manual, to avoid confusing them with the "instruction operands" of the machine language, we use the term "argument" to refer to parts of expressions only, reserving the word "operand" to refer only to machine instruction operands.

Symbols are evaluated to yield {section NNN} where section is one of text, data, bss, absolute, or undefined. NNN is a signed, 2's complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned that only the low order 32 bits are used, and as pretends these 32 bits are an integer. You may write integer-manipulating instructions that act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis `(' followed by an integer expression, followed by a right parenthesis `)'; or a prefix operator followed by an argument.

Operators

Operators are arithmetic functions, like + or %. Prefix operators are followed by an argument. Infix operators appear between their arguments. Operators may be preceded and/or followed by whitespace.

Prefix Operator

as has the following prefix operators. They each take one argument, which must be absolute.

-
Negation. Two's complement negation.
~
Complementation. Bitwise not.

Infix Operators

Infix operators take two arguments, one on either side. Operators have precedence, but operations with equal precedence are performed left to right. Apart from + or -, both arguments must be absolute, and the result is absolute.

  1. Highest Precedence
    *
    Multiplication.
    /
    Division. Truncation is the same as the C operator `/'
    %
    Remainder.
    <
    <<
    Shift Left. Same as the C operator `<<'.
    >
    >>
    Shift Right. Same as the C operator `>>'.
  2. Intermediate precedence
    |
    Bitwise Inclusive Or.
    &
    Bitwise And.
    ^
    Bitwise Exclusive Or.
    !
    Bitwise Or Not.
  3. Lowest Precedence
    +
    Addition. If either argument is absolute, the result has the section of the other argument. You may not add together arguments from different sections.
    -
    Subtraction. If the right argument is absolute, the result has the section of the left argument. If both arguments are in the same section, the result is absolute. You may not subtract arguments from different sections.

In short, it's only meaningful to add or subtract the offsets in an address; you can only have a defined section in one of the two arguments.

Assembler Directives

All assembler directives have names that begin with a period (`.'). The rest of the name is letters, usually in lower case.

This chapter discusses directives that are available regardless of the target machine configuration for the GNU assembler. Some machine configurations provide additional directives. See section Machine Dependent Features.

.abort

This directive stops the assembly immediately. It is for compatibility with other assemblers. The original idea was that the assembly language source would be piped into the assembler. If the sender of the source quit, it could use this directive tells as to quit also. One day .abort will not be supported.

.ABORT

When producing COFF output, as accepts this directive as a synonym for `.abort'.

When producing b.out output, as accepts this directive, but ignores it.

.align abs-expr , abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The first expression, which must be absolute, specifies the alignment, according to one of two conventions. Which convention is used depends on the machine architecture:

This inconsistency is due to the different behaviors of the various native assemblers for these systems which GAS must emulate. GAS also provides .balign and .p2align directives, described later, which have a consistent behavior across all architectures (but are specific to GAS).

.app-file string

.app-file (which may also be spelled `.file') tells as that we are about to start a new logical file. string is the new file name. In general, the filename is recognized whether or not it is surrounded by quotes `"'; but if you wish to specify an empty file name is permitted, you must give the quotes--"". This statement may go away in future: it is only recognized to be compatible with old as programs.

.ascii "string"...

.ascii expects zero or more string literals (see section Strings) separated by commas. It assembles each string (with no automatic trailing zero byte) into consecutive addresses.

.asciz "string"...

.asciz is just like .ascii, but each string is followed by a zero byte. The "z" in `.asciz' stands for "zero".

.balign abs-expr , abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The first expression (which must be absolute) is the alignment request in bytes. For example `.balign 8' advances the location counter until it is a multiple of 8. If the location counter is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the value to be stored in the padding bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are zero.

.byte expressions

.byte expects zero or more expressions, separated by commas. Each expression is assembled into the next byte.

.comm symbol , length

.comm declares a named common area in the bss section. Normally ld reserves memory addresses for it during linking, so no partial program defines the location of the symbol. Use .comm to tell ld that it must be at least length bytes long. ld allocates space for each .comm symbol that is at least as long as the longest .comm request in any of the partial programs linked. length is an absolute expression.

The syntax for .comm differs slightly on the HPPA. The syntax is `symbol .comm, length'; symbol is optional.

.data subsection

.data tells as to assemble the following statements onto the end of the data subsection numbered subsection (which is an absolute expression). If subsection is omitted, it defaults to zero.

.def name

Begin defining debugging information for a symbol name; the definition extends until the .endef directive is encountered.

This directive is only observed when as is configured for COFF format output; when producing b.out, `.def' is recognized, but ignored.

.desc symbol, abs-expression

This directive sets the descriptor of the symbol (see section Symbol Attributes) to the low 16 bits of an absolute expression.

The `.desc' directive is not available when as is configured for COFF output; it is only for a.out or b.out object format. For the sake of compatibility, as accepts it, but produces no output, when configured for COFF.

.dim

This directive is generated by compilers to include auxiliary debugging information in the symbol table. It is only permitted inside .def/.endef pairs.

`.dim' is only meaningful when generating COFF format output; when as is generating b.out, it accepts this directive but ignores it.

.double flonums

.double expects zero or more flonums, separated by commas. It assembles floating point numbers. The exact kind of floating point numbers emitted depends on how as is configured. See section Machine Dependent Features.

.eject

Force a page break at this point, when generating assembly listings.

.else

.else is part of the as support for conditional assembly; see section .if absolute expression. It marks the beginning of a section of code to be assembled if the condition for the preceding .if was false.

.endef

This directive flags the end of a symbol definition begun with .def.

`.endef' is only meaningful when generating COFF format output; if as is configured to generate b.out, it accepts this directive but ignores it.

.endif

.endif is part of the as support for conditional assembly; it marks the end of a block of code that is only assembled conditionally. See section .if absolute expression.

.equ symbol, expression

This directive sets the value of symbol to expression. It is synonymous with `.set'; see section .set symbol, expression.

The syntax for equ on the HPPA is `symbol .equ expression'.

.extern

.extern is accepted in the source program--for compatibility with other assemblers--but it is ignored. as treats all undefined symbols as external.

.file string

.file (which may also be spelled `.app-file') tells as that we are about to start a new logical file. string is the new file name. In general, the filename is recognized whether or not it is surrounded by quotes `"'; but if you wish to specify an empty file name, you must give the quotes--"". This statement may go away in future: it is only recognized to be compatible with old as programs.

.fill repeat , size , value

result, size and value are absolute expressions. This emits repeat copies of size bytes. Repeat may be zero or more. Size may be zero or more, but if it is more than 8, then it is deemed to have the value 8, compatible with other people's assemblers. The contents of each repeat bytes is taken from an 8-byte number. The highest order 4 bytes are zero. The lowest order 4 bytes are value rendered in the byte-order of an integer on the computer as is assembling for. Each size bytes in a repetition is taken from the lowest order size bytes of this number. Again, this bizarre behavior is compatible with other people's assemblers.

size and value are optional. If the second comma and value are absent, value is assumed zero. If the first comma and following tokens are absent, size is assumed to be 1.

.float flonums

This directive assembles zero or more flonums, separated by commas. It has the same effect as .single. The exact kind of floating point numbers emitted depends on how as is configured. See section Machine Dependent Features.

.global symbol, .globl symbol

.global makes the symbol visible to ld. If you define symbol in your partial program, its value is made available to other partial programs that are linked with it. Otherwise, symbol takes its attributes from a symbol of the same name from another file linked into the same program.

Both spellings (`.globl' and `.global') are accepted, for compatibility with other assemblers.

On the HPPA, .global is not always enough to make it accessible to other partial programs. You may need the HPPA-only .EXPORT directive as well. See section HPPA Assembler Directives.

.hword expressions

This expects zero or more expressions, and emits a 16 bit number for each.

This directive is a synonym for `.short'; depending on the target architecture, it may also be a synonym for `.word'.

.ident

This directive is used by some assemblers to place tags in object files. as simply accepts the directive for source-file compatibility with such assemblers, but does not actually emit anything for it.

.if absolute expression

.if marks the beginning of a section of code which is only considered part of the source program being assembled if the argument (which must be an absolute expression) is non-zero. The end of the conditional section of code must be marked by .endif (see section .endif); optionally, you may include code for the alternative condition, flagged by .else (see section .else.

The following variants of .if are also supported:

.ifdef symbol
Assembles the following section of code if the specified symbol has been defined.
.ifndef symbol
ifnotdef symbol
Assembles the following section of code if the specified symbol has not been defined. Both spelling variants are equivalent.

.include "file"

This directive provides a way to include supporting files at specified points in your source program. The code from file is assembled as if it followed the point of the .include; when the end of the included file is reached, assembly of the original file continues. You can control the search paths used with the `-I' command-line option (see section Command-Line Options). Quotation marks are required around file.

.int expressions

Expect zero or more expressions, of any section, separated by commas. For each expression, emit a number that, at run time, is the value of that expression. The byte order and bit size of the number depends on what kind of target the assembly is for.

.irp symbol,values...

Evaluate a sequence of statements assigning different values to symbol. The sequence of statements starts at the .irp directive, and is terminated by an .endr directive. For each value, symbol is set to value, and the sequence of statements is assembled. If no value is listed, the sequence of statements is assembled once, with symbol set to the null string. To refer to symbol within the sequence of statements, use \symbol.

For example, assembling

        .irp    param,1,2,3
        move    d\param,sp@-
        .endr

is equivalent to assembling

        move    d1,sp@-
        move    d2,sp@-
        move    d3,sp@-

.irpc symbol,values...

Evaluate a sequence of statements assigning different values to symbol. The sequence of statements starts at the .irpc directive, and is terminated by an .endr directive. For each character in value, symbol is set to the character, and the sequence of statements is assembled. If no value is listed, the sequence of statements is assembled once, with symbol set to the null string. To refer to symbol within the sequence of statements, use \symbol.

For example, assembling

        .irpc    param,123
        move    d\param,sp@-
        .endr

is equivalent to assembling

        move    d1,sp@-
        move    d2,sp@-
        move    d3,sp@-

.lcomm symbol , length

Reserve length (an absolute expression) bytes for a local common denoted by symbol. The section and value of symbol are those of the new local common. The addresses are allocated in the bss section, so that at run-time the bytes start off zeroed. Symbol is not declared global (see section .global symbol, .globl symbol), so is normally not visible to ld.

The syntax for .lcomm differs slightly on the HPPA. The syntax is `symbol .lcomm, length'; symbol is optional.

.lflags

as accepts this directive, for compatibility with other assemblers, but ignores it.

.line line-number

Change the logical line number. line-number must be an absolute expression. The next line has that logical line number. Therefore any other statements on the current line (after a statement separator character) are reported as on logical line number line-number - 1. One day as will no longer support this directive: it is recognized only for compatibility with existing assembler programs.

Even though this is a directive associated with the a.out or b.out object-code formats, as still recognizes it when producing COFF output, and treats `.line' as though it were the COFF `.ln' if it is found outside a .def/.endef pair.

Inside a .def, `.line' is, instead, one of the directives used by compilers to generate auxiliary symbol information for debugging.

.ln line-number

`.ln' is a synonym for `.line'.

.list

Control (in conjunction with the .nolist directive) whether or not assembly listings are generated. These two directives maintain an internal counter (which is zero initially). .list increments the counter, and .nolist decrements it. Assembly listings are generated whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the `-a' command line option; see section Command-Line Options), the initial value of the listing counter is one.

.long expressions

.long is the same as `.int', see section .int expressions.

.macro

The commands .macro and .endm allow you to define macros that generate assembly output. For example, this definition specifies a macro sum that puts a sequence of numbers into memory:

        .macro  sum from=0, to=5
        .long   \from
        .if     \to-\from
        sum     "(\from+1)",\to
        .endif
        .endm

With that definition, `SUM 0,5' is equivalent to this assembly input:

        .long   0
        .long   1
        .long   2
        .long   3
        .long   4
        .long   5
.macro macname
.macro macname macargs ...
Begin the definition of a macro called macname. If your macro definition requires arguments, specify their names after the macro name, separated by commas or spaces. You can supply a default value for any macro argument by following the name with `=deflt'. For example, these are all valid .macro statements:
.macro comm
Begin the definition of a macro called comm, which takes no arguments.
.macro plus1 p, p1
.macro plus1 p p1
Either statement begins the definition of a macro called plus1, which takes two arguments; within the macro definition, write `\p' or `\p1' to evaluate the arguments.
.macro reserve_str p1=0 p2
Begin the definition of a macro called reserve_str, with two arguments. The first argument has a default value, but not the second. After the definition is complete, you can call the macro either as `reserve_str a,b' (with `\p1' evaluating to a and `\p2' evaluating to b), or as `reserve_str ,b' (with `\p1' evaluating as the default, in this case `0', and `\p2' evaluating to b).
When you call a macro, you can specify the argument values either by position, or by keyword. For example, `sum 9,17' is equivalent to `sum to=17, from=9'.
.endm
Mark the end of a macro definition.
.exitm
Exit early from the current macro definition.
\@
as maintains a counter of how many macros it has executed in this pseudo-variable; you can copy that number to your output with `\@', but only within a macro definition.

.nolist

Control (in conjunction with the .list directive) whether or not assembly listings are generated. These two directives maintain an internal counter (which is zero initially). .list increments the counter, and .nolist decrements it. Assembly listings are generated whenever the counter is greater than zero.

.octa bignums

This directive expects zero or more bignums, separated by commas. For each bignum, it emits a 16-byte integer.

The term "octa" comes from contexts in which a "word" is two bytes; hence octa-word for 16 bytes.

.org new-lc , fill

Advance the location counter of the current section to new-lc. new-lc is either an absolute expression or an expression with the same section as the current subsection. That is, you can't use .org to cross sections: if new-lc has the wrong section, the .org directive is ignored. To be compatible with former assemblers, if the section of new-lc is absolute, as issues a warning, then pretends the section of new-lc is the same as the current subsection.

.org may only increase the location counter, or leave it unchanged; you cannot use .org to move the location counter backwards.

Because as tries to assemble programs in one pass, new-lc may not be undefined. If you really detest this restriction we eagerly await a chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not to the start of the subsection. This is compatible with other people's assemblers.

When the location counter (of the current subsection) is advanced, the intervening bytes are filled with fill which should be an absolute expression. If the comma and fill are omitted, fill defaults to zero.

.p2align abs-expr , abs-expr

Pad the location counter (in the current subsection) to a particular storage boundary. The first expression (which must be absolute) is the number of low-order zero bits the location counter must have after advancement. For example `.p2align 3' advances the location counter until it a multiple of 8. If the location counter is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the value to be stored in the padding bytes. It (and the comma) may be omitted. If it is omitted, the padding bytes are zero.

.psize lines , columns

Use this directive to declare the number of lines--and, optionally, the number of columns--to use for each page, when generating listings.

If you do not use .psize, listings use a default line-count of 60. You may omit the comma and columns specification; the default width is 200 columns.

as generates formfeeds whenever the specified number of lines is exceeded (or whenever you explicitly request one, using .eject).

If you specify lines as 0, no formfeeds are generated save those explicitly specified with .eject.

.quad bignums

.quad expects zero or more bignums, separated by commas. For each bignum, it emits an 8-byte integer. If the bignum won't fit in 8 bytes, it prints a warning message; and just takes the lowest order 8 bytes of the bignum.

The term "quad" comes from contexts in which a "word" is two bytes; hence quad-word for 8 bytes.

.rept count

Repeat the sequence of lines between the .rept directive and the next .endr directive count times.

For example, assembling

        .rept   3
        .long   0
        .endr

is equivalent to assembling

        .long   0
        .long   0
        .long   0

.sbttl "subheading"

Use subheading as the title (third line, immediately after the title line) when generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within ten lines of the top of a page.

.scl class

Set the storage-class value for a symbol. This directive may only be used inside a .def/.endef pair. Storage class may flag whether a symbol is static or external, or it may record further symbolic debugging information.

The `.scl' directive is primarily associated with COFF output; when configured to generate b.out output format, as accepts this directive but ignores it.

.section name, subsection

Assemble the following code into end of subsection numbered subsection in the COFF named section name. If you omit subsection, as uses subsection number zero. `.section .text' is equivalent to the .text directive; `.section .data' is equivalent to the .data directive. This directive is only supported for targets that actually support arbitrarily named sections; on a.out targets, for example, it is not accepted, even with a standard a.out section name as its parameter.

.set symbol, expression

Set the value of symbol to expression. This changes symbol's value and type to conform to expression. If symbol was flagged as external, it remains flagged. (See section Symbol Attributes.)

You may .set a symbol many times in the same assembly.

If you .set a global symbol, the value stored in the object file is the last value stored into it.

The syntax for set on the HPPA is `symbol .set expression'.

.short expressions

.short is normally the same as `.word'. See section .word expressions.

In some configurations, however, .short and .word generate numbers of different lengths; see section Machine Dependent Features.

.single flonums

This directive assembles zero or more flonums, separated by commas. It has the same effect as .float. The exact kind of floating point numbers emitted depends on how as is configured. See section Machine Dependent Features.

.size

This directive is generated by compilers to include auxiliary debugging information in the symbol table. It is only permitted inside .def/.endef pairs.

`.size' is only meaningful when generating COFF format output; when as is generating b.out, it accepts this directive but ignores it.

.space size , fill

This directive emits size bytes, each of value fill. Both size and fill are absolute expressions. If the comma and fill are omitted, fill is assumed to be zero.

Warning: .space has a completely different meaning for HPPA targets; use .block as a substitute. See HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001) for the meaning of the .space directive. See section HPPA Assembler Directives, for a summary.

.stabd, .stabn, .stabs

There are three directives that begin `.stab'. All emit symbols (see section Symbols), for use by symbolic debuggers. The symbols are not entered in the as hash table: they cannot be referenced elsewhere in the source file. Up to five fields are required:

string
This is the symbol's name. It may contain any character except `\000', so is more general than ordinary symbol names. Some debuggers used to code arbitrarily complex structures into symbol names using this field.
type
An absolute expression. The symbol's type is set to the low 8 bits of this expression. Any bit pattern is permitted, but ld and debuggers choke on silly bit patterns.
other
An absolute expression. The symbol's "other" attribute is set to the low 8 bits of this expression.
desc
An absolute expression. The symbol's descriptor is set to the low 16 bits of this expression.
value
An absolute expression which becomes the symbol's value.

If a warning is detected while reading a .stabd, .stabn, or .stabs statement, the symbol has probably already been created; you get a half-formed symbol in your object file. This is compatible with earlier assemblers!

.stabd type , other , desc
The "name" of the symbol generated is not even an empty string. It is a null pointer, for compatibility. Older assemblers used a null pointer so they didn't waste space in object files with empty strings. The symbol's value is set to the location counter, relocatably. When your program is linked, the value of this symbol is the address of the location counter when the .stabd was assembled.
.stabn type , other , desc , value
The name of the symbol is set to the empty string "".
.stabs string , type , other , desc , value
All five fields are specified.

.string "str"

Copy the characters in str to the object file. You may specify more than one string to copy, separated by commas. Unless otherwise specified for a particular machine, the assembler marks the end of each string with a 0 byte. You can use any of the escape sequences described in section Strings.

.tag structname

This directive is generated by compilers to include auxiliary debugging information in the symbol table. It is only permitted inside .def/.endef pairs. Tags are used to link structure definitions in the symbol table with instances of those structures.

`.tag' is only used when generating COFF format output; when as is generating b.out, it accepts this directive but ignores it.

.text subsection

Tells as to assemble the following statements onto the end of the text subsection numbered subsection, which is an absolute expression. If subsection is omitted, subsection number zero is used.

.title "heading"

Use heading as the title (second line, immediately after the source file name and pagenumber) when generating assembly listings.

This directive affects subsequent pages, as well as the current page if it appears within ten lines of the top of a page.

.type int

This directive, permitted only within .def/.endef pairs, records the integer int as the type attribute of a symbol table entry.

`.type' is associated only with COFF format output; when as is configured for b.out output, it accepts this directive but ignores it.

.val addr

This directive, permitted only within .def/.endef pairs, records the address addr as the value attribute of a symbol table entry.

`.val' is used only for COFF output; when as is configured for b.out, it accepts this directive but ignores it.

.word expressions

This directive expects zero or more expressions, of any section, separated by commas.

The size of the number emitted, and its byte order, depend on what target computer the assembly is for.

Warning: Special Treatment to support Compilers

Machines with a 32-bit address space, but that do less than 32-bit addressing, require the following special treatment. If the machine of interest to you does 32-bit addressing (or doesn't require it; see section Machine Dependent Features), you can ignore this issue.

In order to assemble compiler output into something that works, as occasionlly does strange things to `.word' directives. Directives of the form `.word sym1-sym2' are often emitted by compilers as part of jump tables. Therefore, when as assembles a directive of the form `.word sym1-sym2', and the difference between sym1 and sym2 does not fit in 16 bits, as creates a secondary jump table, immediately before the next label. This secondary jump table is preceded by a short-jump to the first byte after the secondary table. This short-jump prevents the flow of control from accidentally falling into the new table. Inside the table is a long-jump to sym2. The original `.word' contains sym1 minus the address of the long-jump to sym2.

If there were several occurrences of `.word sym1-sym2' before the secondary jump table, all of them are adjusted. If there was a `.word sym3-sym4', that also did not fit in sixteen bits, a long-jump to sym4 is included in the secondary jump table, and the .word directives are adjusted to contain sym3 minus the address of the long-jump to sym4; and so on, for as many entries in the original jump table as necessary.

Deprecated Directives

One day these directives won't work. They are included for compatibility with older assemblers.

.abort
.app-file
.line

Machine Dependent Features

The machine instruction sets are (almost by definition) different on each machine where as runs. Floating point representations vary as well, and as often supports a few additional directives or command-line options for compatibility with other assemblers on a particular platform. Finally, some versions of as support special pseudo-instructions for branch optimization.

This chapter discusses most of these differences, though it does not include details on any machine's instruction set. For details on that subject, see the hardware manufacturer's manual.

HPPA Dependent Features

Notes

As a back end for GNU CC as has been throughly tested and should work extremely well. We have tested it only minimally on hand written assembly code and no one has tested it much on the assembly output from the HP compilers.

The format of the debugging sections has changed since the original as port (version 1.3X) was released; therefore, you must rebuild all HPPA objects and libraries with the new assembler so that you can debug the final executable.

The HPPA as port generates a small subset of the relocations available in the SOM and ELF object file formats. Additional relocation support will be added as it becomes necessary.

Options

as has no machine-dependent command-line options for the HPPA.

Syntax

The assembler syntax closely follows the HPPA instruction set reference manual; assembler directives and general syntax closely follow the HPPA assembly language reference manual, with a few noteworthy differences.

First, a colon may immediately follow a label definition. This is simply for compatibility with how most assembly language programmers write code.

Some obscure expression parsing problems may affect hand written code which uses the spop instructions, or code which makes significant use of the ! line separator.

as is much less forgiving about missing arguments and other similar oversights than the HP assembler. as notifies you of missing arguments as syntax errors; this is regarded as a feature, not a bug.

Finally, as allows you to use an external symbol without explicitly importing the symbol. Warning: in the future this will be an error for HPPA targets.

Special characters for HPPA targets include:

`;' is the line comment character.

`!' can be used instead of a newline to separate statements.

Since `$' has no special meaning, you may use it in symbol names.

Floating Point

The HPPA family uses IEEE floating-point numbers.

HPPA Assembler Directives

as for the HPPA supports many additional directives for compatibility with the native assembler. This section describes them only briefly. For detailed information on HPPA-specific assembler directives, see HP9000 Series 800 Assembly Language Reference Manual (HP 92432-90001).

as does not support the following assembler directives described in the HP manual:

.endm           .liston
.enter          .locct
.leave          .macro  
.listoff

Beyond those implemented for compatibility, as supports one additional assembler directive for the HPPA: .param. It conveys register argument locations for static functions. Its syntax closely follows the .export directive.

These are the additional directives in as for the HPPA:

.block n
.blockz n
Reserve n bytes of storage, and initialize them to zero.
.call
Mark the beginning of a procedure call. Only the special case with no arguments is allowed.
.callinfo [ param=value, ... ] [ flag, ... ]
Specify a number of parameters and flags that define the environment for a procedure. param may be any of `frame' (frame size), `entry_gr' (end of general register range), `entry_fr' (end of float register range), `entry_sr' (end of space register range). The values for flag are `calls' or `caller' (proc has subroutines), `no_calls' (proc does not call subroutines), `save_rp' (preserve return pointer), `save_sp' (proc preserves stack pointer), `no_unwind' (do not unwind this proc), `hpux_int' (proc is interrupt routine).
.code
Assemble into the standard section called `$TEXT$', subsection `$CODE$'.
.copyright "string"
In the SOM object format, insert string into the object code, marked as a copyright string.
.copyright "string"
In the ELF object format, insert string into the object code, marked as a version string.
.enter
Not yet supported; the assembler rejects programs containing this directive.
.entry
Mark the beginning of a procedure.
.exit
Mark the end of a procedure.
.export name [ ,typ ] [ ,param=r ]
Make a procedure name available to callers. typ, if present, must be one of `absolute', `code' (ELF only, not SOM), `data', `entry', `data', `entry', `millicode', `plabel', `pri_prog', or `sec_prog'. param, if present, provides either relocation information for the procedure arguments and result, or a privilege level. param may be `argwn' (where n ranges from 0 to 3, and indicates one of four one-word arguments); `rtnval' (the procedure's result); or `priv_lev' (privilege level). For arguments or the result, r specifies how to relocate, and must be one of `no' (not relocatable), `gr' (argument is in general register), `fr' (in floating point register), or `fu' (upper half of float register). For `priv_lev', r is an integer.
.half n
Define a two-byte integer constant n; synonym for the portable as directive .short.
.import name [ ,typ ]
Converse of .export; make a procedure available to call. The arguments use the same conventions as the first two arguments for .export.
.label name
Define name as a label for the current assembly location.
.leave
Not yet supported; the assembler rejects programs containing this directive.
.origin lc
Advance location counter to lc. Synonym for the portable directive .org.
.param name [ ,typ ] [ ,param=r ]
Similar to .export, but used for static procedures.
.proc
Use preceding the first statement of a procedure.
.procend
Use following the last statement of a procedure.
label .reg expr
Synonym for .equ; define label with the absolute expression expr as its value.
.space secname [ ,params ]
Switch to section secname, creating a new section by that name if necessary. You may only use params when creating a new section, not when switching to an existing one. secname may identify a section by number rather than by name. If specified, the list params declares attributes of the section, identified by keywords. The keywords recognized are `spnum=exp' (identify this section by the number exp, an absolute expression), `sort=exp' (order sections according to this sort key when linking; exp is an absolute expression), `unloadable' (section contains no loadable data), `notdefined' (this section defined elsewhere), and `private' (data in this section not available to other programs).
.spnum secnam
Allocate four bytes of storage, and initialize them with the section number of the section named secnam. (You can define the section number with the HPPA .space directive.)
.string "str"
Copy the characters in the string str to the object file. See section Strings, for information on escape sequences you can use in as strings. Warning! The HPPA version of .string differs from the usual as definition: it does not write a zero byte after copying str.
.stringz "str"
Like .string, but appends a zero byte after copying str to object file.
.subspa name [ ,params ]
.nsubspa name [ ,params ]
Similar to .space, but selects a subsection name within the current section. You may only specify params when you create a subsection (in the first instance of .subspa for this name). If specified, the list params declares attributes of the subsection, identified by keywords. The keywords recognized are `quad=expr' ("quadrant" for this subsection), `align=expr' (alignment for beginning of this subsection; a power of two), `access=expr' (value for "access rights" field), `sort=expr' (sorting order for this subspace in link), `code_only' (subsection contains only code), `unloadable' (subsection cannot be loaded into memory), `common' (subsection is common block), `dup_comm' (initialized data may have duplicate names), or `zero' (subsection is all zeros, do not write in object file). .nsubspa always creates a new subspace with the given name, even if one with the same name already exists.
.version "str"
Write str as version identifier in object code.

Opcodes

For detailed information on the HPPA machine instruction set, see PA-RISC Architecture and Instruction Set Reference Manual (HP 09740-90039).

Intel 80960 Dependent Features

i960 Command-line Options

-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC
Select the 80960 architecture. Instructions or features not supported by the selected architecture cause fatal errors. `-ACA' is equivalent to `-ACA_A'; `-AKC' is equivalent to `-AMC'. Synonyms are provided for compatibility with other tools. If you do not specify any of these options, as generates code for any instruction or feature that is supported by some version of the 960 (even if this means mixing architectures!). In principle, as attempts to deduce the minimal sufficient processor type if none is specified; depending on the object code format, the processor type may be recorded in the object file. If it is critical that the as output match a specific architecture, specify that architecture explicitly.
-b
Add code to collect information about conditional branches taken, for later optimization using branch prediction bits. (The conditional branch instructions have branch prediction bits in the CA, CB, and CC architectures.) If BR represents a conditional branch instruction, the following represents the code generated by the assembler when `-b' is specified:
        call    increment routine
        .word   0       # pre-counter
Label:  BR
        call    increment routine
        .word   0       # post-counter
The counter following a branch records the number of times that branch was not taken; the differenc between the two counters is the number of times the branch was taken. A table of every such Label is also generated, so that the external postprocessor gbr960 (supplied by Intel) can locate all the counters. This table is always labelled `__BRANCH_TABLE__'; this is a local symbol to permit collecting statistics for many separate object files. The table is word aligned, and begins with a two-word header. The first word, initialized to 0, is used in maintaining linked lists of branch tables. The second word is a count of the number of entries in the table, which follow immediately: each is a word, pointing to one of the labels illustrated above. The first word of the header is used to locate multiple branch tables, since each object file may contain one. Normally the links are maintained with a call to an initialization routine, placed at the beginning of each function in the file. The GNU C compiler generates these calls automatically when you give it a `-b' option. For further details, see the documentation of `gbr960'.
-no-relax
Normally, Compare-and-Branch instructions with targets that require displacements greater than 13 bits (or that have external targets) are replaced with the corresponding compare (or `chkbit') and branch instructions. You can use the `-no-relax' option to specify that as should generate errors instead, if the target displacement is larger than 13 bits. This option does not affect the Compare-and-Jump instructions; the code emitted for them is always adjusted when necessary (depending on displacement size), regardless of whether you use `-no-relax'.

Floating Point

as generates IEEE floating-point numbers for the directives `.float', `.double', `.extended', and `.single'.

i960 Machine Directives

.bss symbol, length, align
Reserve length bytes in the bss section for a local symbol, aligned to the power of two specified by align. length and align must be positive absolute expressions. This directive differs from `.lcomm' only in that it permits you to specify an alignment. See section .lcomm symbol , length.
.extended flonums
.extended expects zero or more flonums, separated by commas; for each flonum, `.extended' emits an IEEE extended-format (80-bit) floating-point number.
.leafproc call-lab, bal-lab
You can use the `.leafproc' directive in conjunction with the optimized callj instruction to enable faster calls of leaf procedures. If a procedure is known to call no other procedures, you may define an entry point that skips procedure prolog code (and that does not depend on system-supplied saved context), and declare it as the bal-lab using `.leafproc'. If the procedure also has an entry point that goes through the normal prolog, you can specify that entry point as call-lab. A `.leafproc' declaration is meant for use in conjunction with the optimized call instruction `callj'; the directive records the data needed later to choose between converting the `callj' into a bal or a call. call-lab is optional; if only one argument is present, or if the two arguments are identical, the single argument is assumed to be the bal entry point.
.sysproc name, index
The `.sysproc' directive defines a name for a system procedure. After you define it using `.sysproc', you can use name to refer to the system procedure identified by index when calling procedures with the optimized call instruction `callj'. Both arguments are required; index must be between 0 and 31 (inclusive).

i960 Opcodes

All Intel 960 machine instructions are supported; see section i960 Command-line Options for a discussion of selecting the instruction subset for a particular 960 architecture.

Some opcodes are processed beyond simply emitting a single corresponding instruction: `callj', and Compare-and-Branch or Compare-and-Jump instructions with target displacements larger than 13 bits.

callj

You can write callj to have the assembler or the linker determine the most appropriate form of subroutine call: `call', `bal', or `calls'. If the assembly source contains enough information--a `.leafproc' or `.sysproc' directive defining the operand--then as translates the callj; if not, it simply emits the callj, leaving it for the linker to resolve.

Compare-and-Branch

The 960 architectures provide combined Compare-and-Branch instructions that permit you to store the branch target in the lower 13 bits of the instruction word itself. However, if you specify a branch target far enough away that its address won't fit in 13 bits, the assembler can either issue an error, or convert your Compare-and-Branch instruction into separate instructions to do the compare and the branch.

Whether as gives an error or expands the instruction depends on two choices you can make: whether you use the `-no-relax' option, and whether you use a "Compare and Branch" instruction or a "Compare and Jump" instruction. The "Jump" instructions are always expanded if necessary; the "Branch" instructions are expanded when necessary unless you specify -no-relax---in which case as gives an error instead.

These are the Compare-and-Branch instructions, their "Jump" variants, and the instruction pairs they may expand into:

PowerPC Dependent Features

Options

as has several additional command-line options for the PowerPC family.

-mpwrx
-mpwr2
Generate code for IBM POWER/2 (RIOS2)
-mpwr
Generate code for IBM POWER (RIOS1)
-m601
Generate code for Motorola PowerPC 601
-mppc
-mppc32
-m403
-m603
-m604
generate code for Motorola PowerPC 603/604
-mppc64
-m620
Generate code for Motorola PowerPC 620
-mcom
Generate code Power/PowerPC common instructions
-many
Generate code for any architecture (PWR/PWRX/PPC)
-mregnames
Allow symbolic names for registers
-mno-regnames
Do not allow symbolic names for registers

The following options refer to the ELF object format:

-mrelocatable
Support for GCC's `-mrelocatable' option
-mrelocatable-lib
Support for GCC's `-mrelocatable-lib' option
-memb
Set PPC_EMB bit in ELF flags
-mlittle
-mlittle-endian
Generate code for a little-endian machine
-mbig
-mbig-endian
Generate code for a big-endian machine

Syntax

PowerPC operands are just expressions. The only real issue is that a few operand types are optional. All cases which might use an optional operand separate the operands only with commas (in some cases parentheses are used, as in `lwz 1,0(1)' but such cases never have optional operands). There is never more than one optional operand for an instruction.

Before operands are parsed, as checks to see if an optional operand exists, and, if it does, counts the number of commas to see whether the operand should be omitted. For example:

lwz r4,[toc].GS.0.static_int(rtoc)

The argument following the ] must be a symbol name, and the register must be the table-of-contents register: `rtoc' or `2'.

The effect is to use the value 0 as the displacement field in the instruction, and issue a relocation against it based on the symbol. The linker builds the table of contents, and insert the resolved toc offset.

Notes:

PowerPC Register Usage

Each general register has predefined names of the following form (reg_num between 0 and 31, inclusive):

Each floating point register has predefined names of the following form (reg_num between 0 and 31, inclusive):

Each condition register has predefined names of the following form (reg_num between 0 and 7, inclusive):

There are individual registers as well:

sp
r.sp
Stack Pointer, value: 1
rtoc
Table of Contents, value: 2
r.toc
Pointer to the Table of Contents, value: 2
fpscr
value: 0
xer
value: 1
lr
Link Register, value: 8
ctr
value: 9
pmr
value: 0
dar
Data Access Register, value: 19
dsisr
Data Storage Interrupt Status Register, value: 18
dec
Decrementer, value: 22
sdr1
Storage Description Register 1, value: 25
srr0
Machine Status Save/Restore Register 0, value: 26
srr1
Machine Status Save/Restore Register 1, value: 27

Floating Point

The PowerPC programming environment defines a set of floating-point instructions. A specific PowerPC processor may implement all, some, or none of the floating-point instructions. For more information on the floating-point capability of a given processor, refer to the user's manual of that particular processor.

Machine Directives

The following pseudo-ops are specific to the RS/6000 XCOFF format.

comm      eb       extern
lcomm     ec       function
bb        ef       lglobl

bc        ei       rename
bf        es       stabx
bi                 text
bs                 toc
csect
data

The following pseudo-ops are specific to the ELF object format.

long
word
short
rdata
rodata
lcomm

The following pseudo-ops are specific to the Windows NT PowerPC PE (coff) format.

previous    znop
pdata       comm
ydata       lcomm
reldata     section
rdata       function
ualong      tocd

This pseudo-op is used even when not generating XCOFF output.

tc

Opcodes

For detailed information on the PowerPC machine instruction set, see The PowerPC Architecture, edited by May, Silha, Simpson, and Warren, ISBN 1-55860-316-6.

SPARC Dependent Features

Options

The SPARC chip family includes several successive levels (or other variants) of chip, using the same core instruction set, but including a few additional instructions at each level.

By default, as assumes the core instruction set (SPARC v6), but "bumps" the architecture level as needed: it switches to successively higher architectures as it encounters instructions that only exist in the higher levels.

If not configured for SPARC v9 (sparc64-*-*) GAS will not bump passed sparclite by default, an option must be passed to enable the v9 instructions.

GAS treats sparclite as being compatible with v8, unless an architecture is explicitly requested. SPARC v9 is always incompatible with sparclite.

-Av6 | -Av7 | -Av8 | -Asparclite | -Av9 | -Av9a
Use one of the `-A' options to select one of the SPARC architectures explicitly. If you select an architecture explicitly, as reports a fatal error if it encounters an instruction or feature requiring a higher level.
-xarch=v8plus | -xarch=v8plusa
For compatibility with the Solaris v9 assembler. These options are equivalent to -Av9 and -Av9a, respectively.
-bump
Warn whenever it is necessary to switch to another level. If an architecture level is explicitly requested, GAS will not issue warnings until that level is reached, and will then bump the level as required (except between incompatible levels).

Floating Point

The Sparc uses IEEE floating-point numbers.

Sparc Machine Directives

The Sparc version of as supports the following additional machine directives:

.align
This must be followed by the desired alignment in bytes.
.common
This must be followed by a symbol name, a positive number, and "bss". This behaves somewhat like .comm, but the syntax is different.
.half
This is functionally identical to .short.
.proc
This directive is ignored. Any text following it on the same line is also ignored.
.reserve
This must be followed by a symbol name, a positive number, and "bss". This behaves somewhat like .lcomm, but the syntax is different.
.seg
This must be followed by "text", "data", or "data1". It behaves like .text, .data, or .data 1.
.skip
This is functionally identical to the .space directive.
.word
On the Sparc, the .word directive produces 32 bit values, instead of the 16 bit values it produces on many other machines.
.xword
On the Sparc V9 processor, the .xword directive produces 64 bit values.

80386 Dependent Features

Options

The 80386 has no machine dependent options.

AT&T Syntax versus Intel Syntax

In order to maintain compatibility with the output of gcc, as supports AT&T System V/386 assembler syntax. This is quite different from Intel syntax. We mention these differences because almost all 80386 documents used only Intel syntax. Notable differences between the two syntaxes are:

Opcode Naming

Opcode names are suffixed with one character modifiers which specify the size of operands. The letters `b', `w', and `l' specify byte, word, and long operands. If no suffix is specified by an instruction and it contains no memory operands then as tries to fill in the missing suffix based on the destination register operand (the last one by convention). Thus, `mov %ax, %bx' is equivalent to `movw %ax, %bx'; also, `mov $1, %bx' is equivalent to `movw $1, %bx'. Note that this is incompatible with the AT&T Unix assembler which assumes that a missing opcode suffix implies long operand size. (This incompatibility does not affect compiler output since compilers always explicitly specify the opcode suffix.)

Almost all opcodes have the same names in AT&T and Intel format. There are a few exceptions. The sign extend and zero extend instructions need two sizes to specify them. They need a size to sign/zero extend from and a size to zero extend to. This is accomplished by using two opcode suffixes in AT&T syntax. Base names for sign extend and zero extend are `movs...' and `movz...' in AT&T syntax (`movsx' and `movzx' in Intel syntax). The opcode suffixes are tacked on to this base name, the from suffix before the to suffix. Thus, `movsbl %al, %edx' is AT&T syntax for "move sign extend from %al to %edx." Possible suffixes, thus, are `bl' (from byte to long), `bw' (from byte to word), and `wl' (from word to long).

The Intel-syntax conversion instructions

are called `cbtw', `cwtl', `cwtd', and `cltd' in AT&T naming. as accepts either naming for these instructions.

Far call/jump instructions are `lcall' and `ljmp' in AT&T syntax, but are `call far' and `jump far' in Intel convention.

Register Naming

Register operands are always prefixes with `%'. The 80386 registers consist of

Opcode Prefixes

Opcode prefixes are used to modify the following opcode. They are used to repeat string instructions, to provide section overrides, to perform bus lock operations, and to give operand and address size (16-bit operands are specified in an instruction by prefixing what would normally be 32-bit operands with a "operand size" opcode prefix). Opcode prefixes are usually given as single-line instructions with no operands, and must directly precede the instruction they act upon. For example, the `scas' (scan string) instruction is repeated with:

        repne
        scas

Here is a list of opcode prefixes:

Memory References

An Intel syntax indirect memory reference of the form

section:[base + index*scale + disp]

is translated into the AT&T syntax

section:disp(base, index, scale)

where base and index are the optional 32-bit base and index registers, disp is the optional displacement, and scale, taking the values 1, 2, 4, and 8, multiplies index to calculate the address of the operand. If no scale is specified, scale is taken to be 1. section specifies the optional section register for the memory operand, and may override the default section register (see a 80386 manual for section register defaults). Note that section overrides in AT&T syntax must have be preceded by a `%'. If you specify a section override which coincides with the default section register, as does not output any section register override prefixes to assemble the given instruction. Thus, section overrides can be specified to emphasize which section register is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: `-4(%ebp)', Intel: `[ebp - 4]'
base is `%ebp'; disp is `-4'. section is missing, and the default section is used (`%ss' for addressing with `%ebp' as the base register). index, scale are both missing.
AT&T: `foo(,%eax,4)', Intel: `[foo + eax*4]'
index is `%eax' (scaled by a scale 4); disp is `foo'. All other fields are missing. The section register here defaults to `%ds'.
AT&T: `foo(,1)'; Intel `[foo]'
This uses the value pointed to by `foo' as a memory operand. Note that base and index are both missing, but there is only one `,'. This is a syntactic exception.
AT&T: `%gs:foo'; Intel `gs:foo'
This selects the contents of the variable `foo' with section register section being `%gs'.

Absolute (as opposed to PC relative) call and jump operands must be prefixed with `*'. If no `*' is specified, as always chooses PC relative addressing for jump/call labels.

Any instruction that has a memory operand must specify its size (byte, word, or long) with an opcode suffix (`b', `w', or `l', respectively).

Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible displacements. This is accomplished by using byte (8-bit) displacement jumps whenever the target is sufficiently close. If a byte displacement is insufficient a long (32-bit) displacement is used. We do not support word (16-bit) displacement jumps (i.e. prefixing the jump instruction with the `addr16' opcode prefix), since the 80386 insists upon masking `%eip' to 16 bits after the word displacement is added.

Note that the `jcxz', `jecxz', `loop', `loopz', `loope', `loopnz' and `loopne' instructions only come in byte displacements, so that if you use these instructions (gcc does not use them) you may get an error message (and incorrect code). The AT&T 80386 assembler tries to get around this problem by expanding `jcxz foo' to

         jcxz cx_zero
         jmp cx_nonzero
cx_zero: jmp foo
cx_nonzero:

Floating Point

All 80387 floating point types except packed BCD are supported. (BCD support may be added without much difficulty). These data types are 16-, 32-, and 64- bit integers, and single (32-bit), double (64-bit), and extended (80-bit) precision floating point. Each supported type has an opcode suffix and a constructor associated with it. Opcode suffixes specify operand's data types. Constructors build these data types into memory.

Register to register operations do not require opcode suffixes, so that `fst %st, %st(1)' is equivalent to `fstl %st, %st(1)'.

Since the 80387 automatically synchronizes with the 80386 `fwait' instructions are almost never needed (this is not the case for the 80286/80287 and 8086/8087 combinations). Therefore, as suppresses the `fwait' instruction whenever it is implicitly selected by one of the `fn...' instructions. For example, `fsave' and `fnsave' are treated identically. In general, all the `fn...' instructions are made equivalent to `f...' instructions. If `fwait' is desired it must be explicitly coded.

Writing 16-bit Code

While GAS normally writes only "pure" 32-bit i386 code, it has limited support for writing code to run in real mode or in 16-bit protected mode code segments. To do this, insert a `.code16' directive before the assembly language instructions to be run in 16-bit mode. You can switch GAS back to writing normal 32-bit code with the `.code32' directive.

GAS understands exactly the same assembly language syntax in 16-bit mode as in 32-bit mode. The function of any given instruction is exactly the same regardless of mode, as long as the resulting object code is executed in the mode for which GAS wrote it. So, for example, the `ret' mnemonic produces a 32-bit return instruction regardless of whether it is to be run in 16-bit or 32-bit mode. (If GAS is in 16-bit mode, it will add an operand size prefix to the instruction to force it to be a 32-bit return.)

This means, for one thing, that you can use GNU CC to write code to be run in real mode or 16-bit protected mode. Just insert the statement `asm(".code16");' at the beginning of your C source file, and while GNU CC will still be generating 32-bit code, GAS will automatically add all the necessary size prefixes to make that code run in 16-bit mode. Of course, since GNU CC only writes small-model code (it doesn't know how to attach segment selectors to pointers like native x86 compilers do), any 16-bit code you write with GNU CC will essentially be limited to a 64K address space. Also, there will be a code size and performance penalty due to all the extra address and operand size prefixes GAS has to add to the instructions.

Note that placing GAS in 16-bit mode does not mean that the resulting code will necessarily run on a 16-bit pre-80386 processor. To write code that runs on such a processor, you would have to refrain from using any 32-bit constructs which require GAS to output address or operand size prefixes. At the moment this would be rather difficult, because GAS currently supports only 32-bit addressing modes: when writing 16-bit code, it always outputs address size prefixes for any instruction that uses a non-register addressing mode. So you can write code that runs on 16-bit processors, but only if that code never references memory.

Notes

There is some trickery concerning the `mul' and `imul' instructions that deserves mention. The 16-, 32-, and 64-bit expanding multiplies (base opcode `0xf6'; extension 4 for `mul' and 5 for `imul') can be output only in the one operand form. Thus, `imul %ebx, %eax' does not select the expanding multiply; the expanding multiply would clobber the `%edx' register, and this would confuse gcc output. Use `imul %ebx' to get the 64-bit product in `%edx:%eax'.

We have added a two operand form of `imul' when the first operand is an immediate mode expression and the second operand is a register. This is just a shorthand, so that, multiplying `%eax' by 69, for example, can be done with `imul $69, %eax' rather than `imul $69, %eax, %eax'.

Z8000 Dependent Features

The Z8000 as supports both members of the Z8000 family: the unsegmented Z8002, with 16 bit addresses, and the segmented Z8001 with 24 bit addresses.

When the assembler is in unsegmented mode (specified with the unsegm directive), an address takes up one word (16 bit) sized register. When the assembler is in segmented mode (specified with the segm directive), a 24-bit address takes up a long (32 bit) register. See section Assembler Directives for the Z8000, for a list of other Z8000 specific assembler directives.

Options

as has no additional command-line options for the Zilog Z8000 family.

Syntax

Special Characters

`!' is the line comment character.

You can use `;' instead of a newline to separate statements.

Register Names

The Z8000 has sixteen 16 bit registers, numbered 0 to 15. You can refer to different sized groups of registers by register number, with the prefix `r' for 16 bit registers, `rr' for 32 bit registers and `rq' for 64 bit registers. You can also refer to the contents of the first eight (of the sixteen 16 bit registers) by bytes. They are named `rnh' and `rnl'.

byte registers
r0l r0h r1h r1l r2h r2l r3h r3l
r4h r4l r5h r5l r6h r6l r7h r7l

word registers
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

long word registers
rr0 rr2 rr4 rr6 rr8 rr10 rr12 rr14

quad word registers
rq0 rq4 rq8 rq12

Addressing Modes

as understands the following addressing modes for the Z8000:

rn
Register direct
@rn
Indirect register
addr
Direct: the 16 bit or 24 bit address (depending on whether the assembler is in segmented or unsegmented mode) of the operand is in the instruction.
address(rn)
Indexed: the 16 or 24 bit address is added to the 16 bit register to produce the final address in memory of the operand.
rn(#imm)
Base Address: the 16 or 24 bit register is added to the 16 bit sign extended immediate displacement to produce the final address in memory of the operand.
rn(rm)
Base Index: the 16 or 24 bit register rn is added to the sign extended 16 bit index register rm to produce the final address in memory of the operand.
#xx
Immediate data xx.

Assembler Directives for the Z8000

The Z8000 port of as includes these additional assembler directives, for compatibility with other Z8000 assemblers. As shown, these do not begin with `.' (unlike the ordinary as directives).

segm
Generates code for the segmented Z8001.
unsegm
Generates code for the unsegmented Z8002.
name
Synonym for .file
global
Synonym for .global
wval
Synonym for .word
lval
Synonym for .long
bval
Synonym for .byte
sval
Assemble a string. sval expects one string literal, delimited by single quotes. It assembles each byte of the string into consecutive addresses. You can use the escape sequence `%xx' (where xx represents a two-digit hexadecimal number) to represent the character whose ASCII value is xx. Use this feature to describe single quote and other characters that may not appear in string literals as themselves. For example, the C statement `char *a = "he said \"it's 50% off\"";' is represented in Z8000 assembly language (shown with the assembler output in hex at the left) as
68652073    sval    'he said %22it%27s 50%25 off%22%00'
61696420
22697427
73203530
25206F66
662200
rsect
synonym for .section
block
synonym for .space
even
special case of .align; aligns output to even byte boundary.

Opcodes

For detailed information on the Z8000 machine instruction set, see Z8000 Technical Manual.

MIPS Dependent Features

GNU as for MIPS architectures supports the MIPS R2000, R3000, R4000 and R6000 processors. For information about the MIPS instruction set, see MIPS RISC Architecture, by Kane and Heindrich (Prentice-Hall). For an overview of MIPS assembly conventions, see "Appendix D: Assembly Language Programming" in the same work.

Assembler options

The MIPS configurations of GNU as support these special options:

-G num
This option sets the largest size of an object that can be referenced implicitly with the gp register. It is only accepted for targets that use ECOFF format. The default value is 8.
-EB
-EL
Any MIPS configuration of as can select big-endian or little-endian output at run time (unlike the other GNU development tools, which must be configured for one or the other). Use `-EB' to select big-endian output, and `-EL' for little-endian.
-mips1
-mips2
-mips3
Generate code for a particular MIPS Instruction Set Architecture level. `-mips1' corresponds to the R2000 and R3000 processors, `-mips2' to the R6000 processor, and `-mips3' to the R4000 processor. You can also switch instruction sets during the assembly; see section Directives to override the ISA level.
-m4650
-no-m4650
Generate code for the MIPS R4650 chip. This tells the assembler to accept the `mad' and `madu' instruction, and to not schedule `nop' instructions around accesses to the `HI' and `LO' registers. `-no-m4650' turns off this option.
-m4010
-no-m4010
Generate code for the LSI R4010 chip. This tells the assembler to accept the R4010 specific instructions (`addciu', `ffc', etc.), and to not schedule `nop' instructions around accesses to the `HI' and `LO' registers. `-no-m4010' turns off this option.
-mcpu=CPU
Generate code for a particular MIPS cpu. This has little effect on the assembler, but it is passed by gcc.
-nocpp
This option is ignored. It is accepted for command-line compatibility with other assemblers, which use it to turn off C style preprocessing. With GNU as, there is no need for `-nocpp', because the GNU assembler itself never runs the C preprocessor.
--trap
--no-break
as automatically macro expands certain division and multiplication instructions to check for overflow and division by zero. This option causes as to generate code to take a trap exception rather than a break exception when an error is detected. The trap instructions are only supported at Instruction Set Architecture level 2 and higher.
--break
--no-trap
Generate code to take a break exception rather than a trap exception when an error is detected. This is the default.

MIPS ECOFF object code

Assembling for a MIPS ECOFF target supports some additional sections besides the usual .text, .data and .bss. The additional sections are .rdata, used for read-only data, .sdata, used for small data, and .sbss, used for small common objects.

When assembling for ECOFF, the assembler uses the $gp ($28) register to form the address of a "small object". Any object in the .sdata or .sbss sections is considered "small" in this sense. For external objects, or for objects in the .bss section, you can use the gcc `-G' option to control the size of objects addressed via $gp; the default value is 8, meaning that a reference to any object eight bytes or smaller uses $gp. Passing `-G 0' to as prevents it from using the $gp register on the basis of object size (but the assembler uses $gp for objects in .sdata or sbss in any case). The size of an object in the .bss section is set by the .comm or .lcomm directive that defines it. The size of an external object may be set with the .extern directive. For example, `.extern sym,4' declares that the object at sym is 4 bytes in length, whie leaving sym otherwise undefined.

Using small ECOFF objects requires linker support, and assumes that the $gp register is correctly initialized (normally done automatically by the startup code). MIPS ECOFF assembly code must not modify the $gp register.

Directives for debugging information

MIPS ECOFF as supports several directives used for generating debugging information which are not support by traditional MIPS assemblers. These are .def, .endef, .dim, .file, .scl, .size, .tag, .type, .val, .stabd, .stabn, and .stabs. The debugging information generated by the three .stab directives can only be read by GDB, not by traditional MIPS debuggers (this enhancement is required to fully support C++ debugging). These directives are primarily used by compilers, not assembly language programmers!

Directives to override the ISA level

GNU as supports an additional directive to change the MIPS Instruction Set Architecture level on the fly: .set mipsn. n should be a number from 0 to 3. A value from 1 to 3 makes the assembler accept instructions for the corresponding ISA level, from that point on in the assembly. .set mipsn affects not only which instructions are permitted, but also how certain macros are expanded. .set mips0 restores the ISA level to its original level: either the level you selected with command line options, or the default for your configuration. You can use this feature to permit specific R4000 instructions while assembling in 32 bit mode. Use this directive with care!

Traditional MIPS assemblers do not support this directive.

Acknowledgements

If you have contributed to as and your name isn't listed here, it is not meant as a slight. We just don't know about it. Send mail to the maintainer, and we'll correct the situation. Currently the maintainer is Ken Raeburn (email address raeburn@cygnus.com).

Dean Elsner wrote the original GNU assembler for the VAX.(1)

Jay Fenlason maintained GAS for a while, adding support for GDB-specific debug information and the 68k series machines, most of the preprocessing pass, and extensive changes in `messages.c', `input-file.c', `write.c'.

K. Richard Pixley maintained GAS for a while, adding various enhancements and many bug fixes, including merging support for several processors, breaking GAS up to handle multiple object file format back ends (including heavy rewrite, testing, an integration of the coff and b.out back ends), adding configuration including heavy testing and verification of cross assemblers and file splits and renaming, converted GAS to strictly ANSI C including full prototypes, added support for m680[34]0 and cpu32, did considerable work on i960 including a COFF port (including considerable amounts of reverse engineering), a SPARC opcode file rewrite, DECstation, rs6000, and hp300hpux host ports, updated "know" assertions and made them work, much other reorganization, cleanup, and lint.

Ken Raeburn wrote the high-level BFD interface code to replace most of the code in format-specific I/O modules.

The original VMS support was contributed by David L. Kashtan. Eric Youngdale has done much work with it since.

The Intel 80386 machine description was written by Eliot Dresselhaus.

Minh Tran-Le at IntelliCorp contributed some AIX 386 support.

The Motorola 88k machine description was contributed by Devon Bowen of Buffalo University and Torbjorn Granlund of the Swedish Institute of Computer Science.

Keith Knowles at the Open Software Foundation wrote the original MIPS back end (`tc-mips.c', `tc-mips.h'), and contributed Rose format support (which hasn't been merged in yet). Ralph Campbell worked with the MIPS code to support a.out format.

Support for the Zilog Z8k and Hitachi H8/300 and H8/500 processors (tc-z8k, tc-h8300, tc-h8500), and IEEE 695 object file format (obj-ieee), was written by Steve Chamberlain of Cygnus Support. Steve also modified the COFF back end to use BFD for some low-level operations, for use with the H8/300 and AMD 29k targets.

John Gilmore built the AMD 29000 support, added .include support, and simplified the configuration of which versions accept which directives. He updated the 68k machine description so that Motorola's opcodes always produced fixed-size instructions (e.g. jsr), while synthetic instructions remained shrinkable (jbsr). John fixed many bugs, including true tested cross-compilation support, and one bug in relaxation that took a week and required the proverbial one-bit fix.

Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the 68k, completed support for some COFF targets (68k, i386 SVR3, and SCO Unix), added support for MIPS ECOFF and ELF targets, and made a few other minor patches.

Steve Chamberlain made as able to generate listings.

Hewlett-Packard contributed support for the HP9000/300.

Jeff Law wrote GAS and BFD support for the native HPPA object format (SOM) along with a fairly extensive HPPA testsuite (for both SOM and ELF object formats). This work was supported by both the Center for Software Science at the University of Utah and Cygnus Support.

Support for ELF format files has been worked on by Mark Eichin of Cygnus Support (original, incomplete implementation for SPARC), Pete Hoogenboom and Jeff Law at the University of Utah (HPPA mainly), Michael Meissner of the Open Software Foundation (i386 mainly), and Ken Raeburn of Cygnus Support (sparc, and some initial 64-bit support).

Several engineers at Cygnus Support have also provided many small bug fixes and configuration enhancements.

Many others have contributed large or small bugfixes and enhancements. If you have contributed significant work and are not mentioned on this list, and want to be, let us know. Some of the history has been lost; we are not intentionally leaving anyone out.

Index

Jump to: # - - - . - 1 - : - \ - a - b - c - d - e - f - g - h - i - j - l - m - n - o - p - q - r - s - t - u - v - w - x - z

#

  • #
  • #APP
  • #NO_APP
  • -

  • --
  • --statistics
  • -a
  • -A options, i960
  • -ad
  • -ah
  • -al
  • -an
  • -as
  • -Asparclite
  • -Av6
  • -Av8
  • -Av9
  • -Av9a
  • -b option, i960
  • -D
  • -EB option (MIPS)
  • -EL option (MIPS)
  • -f
  • -G option (MIPS)
  • -I path
  • -K
  • -L
  • -M
  • -no-relax option, i960
  • -nocpp ignored (MIPS)
  • -o
  • -R
  • -v
  • -version
  • -W
  • .

  • . (symbol)
  • .o
  • .param on HPPA
  • .set mipsn
  • 1

  • 16-bit code, i386
  • :

  • : (label)
  • \

  • \" (doublequote character)
  • \\ (`\' character)
  • \b (backspace character)
  • \ddd (octal character code)
  • \f (formfeed character)
  • \n (newline character)
  • \r (carriage return character)
  • \t (tab)
  • \xdd (hex character code)
  • a

  • a.out
  • a.out symbol attributes
  • abort directive
  • ABORT directive
  • absolute section
  • addition, permitted arguments
  • addresses
  • addresses, format of
  • addressing modes, Z8000
  • advancing location counter
  • align directive
  • align directive, SPARC
  • altered difference tables
  • app-file directive
  • architecture options, i960
  • architectures, SPARC
  • arguments for addition
  • arguments for subtraction
  • arguments in expressions
  • arithmetic functions
  • arithmetic operands
  • as version
  • ascii directive
  • asciz directive
  • assembler internal logic error
  • assembler, and linker
  • assembly listings, enabling
  • assigning values to symbols, assigning values to symbols
  • attributes, symbol
  • auxiliary attributes, COFF symbols
  • auxiliary symbol information, COFF
  • Av7
  • b

  • backslash (\\)
  • backspace (\b)
  • balign directive
  • big endian output, MIPS
  • big-endian output, MIPS
  • bignums
  • binary integers
  • block
  • branch recording, i960
  • branch statistics table, i960
  • bss directive, i960
  • bss section, bss section
  • bus lock prefixes, i386
  • bval
  • byte directive
  • c

  • call instructions, i386
  • callj, i960 pseudo-opcode
  • carriage return (\r)
  • character constants
  • character escape codes
  • character, single
  • characters used in symbols
  • code16 directive, i386
  • code32 directive, i386
  • COFF auxiliary symbol information
  • COFF named section
  • COFF structure debugging
  • COFF symbol attributes
  • COFF symbol descriptor
  • COFF symbol storage class
  • COFF symbol type
  • COFF symbols, debugging
  • COFF value attribute
  • comm directive
  • command line conventions
  • comments
  • comments, removed by preprocessor
  • common directive, SPARC
  • common variable storage
  • compare and jump expansions, i960
  • compare/branch instructions, i960
  • conditional assembly
  • constant, single character
  • constants
  • constants, bignum
  • constants, character
  • constants, converted by preprocessor
  • constants, floating point
  • constants, integer
  • constants, number
  • constants, string
  • continuing statements
  • conversion instructions, i386
  • coprocessor wait, i386
  • current address
  • current address, advancing
  • d

  • data and text sections, joining
  • data directive
  • data section
  • debuggers, and symbol order
  • debugging COFF symbols
  • decimal integers
  • def directive
  • deprecated directives
  • desc directive
  • descriptor, of a.out symbol
  • difference tables altered
  • difference tables, warning
  • dim directive
  • directives and instructions
  • directives, machine independent
  • directives, Z8000
  • dot (symbol)
  • double directive
  • double directive, i386
  • doublequote (\")
  • e

  • ECOFF sections
  • eight-byte integer
  • eject directive
  • else directive
  • empty expressions
  • emulation
  • endef directive
  • endianness, MIPS
  • endif directive
  • endm directive
  • EOF, newline must precede
  • equ directive
  • error messsages
  • errors, continuing after
  • escape codes, character
  • even
  • exitm directive
  • expr (internal section)
  • expression arguments
  • expressions
  • expressions, empty
  • expressions, integer
  • extended directive, i96
  • extern directive
  • f

  • faster processing (-f)
  • file directive
  • file name, logical, file name, logical
  • files, including
  • files, input
  • fill directive
  • filling memory
  • float directive
  • float directive, i386
  • floating point numbers
  • floating point numbers (double)
  • floating point numbers (single), floating point numbers (single)
  • floating point, HPPA (IEEE)
  • floating point, i386
  • floating point, i960 (IEEE)
  • floating point, SPARC (IEEE)
  • flonums
  • format of error messages
  • format of warning messages
  • formfeed (\f)
  • functions, in expressions
  • fwait instruction, i386
  • g

  • gbr960, i960 postprocessor
  • global
  • global directive
  • gp register, MIPS
  • grouping data
  • h

  • half directive, SPARC
  • hex character code (\xdd)
  • hexadecimal integers
  • HPPA directives not supported
  • HPPA floating point (IEEE)
  • HPPA Syntax
  • HPPA-only directives
  • hword directive
  • i

  • i386 16-bit code
  • i386 conversion instructions
  • i386 floating point
  • i386 fwait instruction
  • i386 immediate operands
  • i386 jump optimization
  • i386 jump, call, return
  • i386 jump/call operands
  • i386 memory references
  • i386 mul, imul instructions
  • i386 opcode naming
  • i386 opcode prefixes
  • i386 options (none)
  • i386 register operands
  • i386 registers
  • i386 sections
  • i386 size suffixes
  • i386 source, destination operands
  • i386 support
  • i386 syntax compatibility
  • i80306 support
  • i960 architecture options
  • i960 branch recording
  • i960 callj pseudo-opcode
  • i960 compare and jump expansions
  • i960 compare/branch instructions
  • i960 floating point (IEEE)
  • i960 machine directives
  • i960 opcodes
  • i960 options
  • i960 support
  • ident directive
  • if directive
  • ifdef directive
  • ifndef directive
  • ifnotdef directive
  • immediate operands, i386
  • imul instruction, i386
  • include directive
  • include directive search path
  • infix operators
  • inhibiting interrupts, i386
  • input
  • input file linenumbers
  • instruction summary, Z8000
  • instructions and directives
  • int directive
  • int directive, i386
  • integer expressions
  • integer, 16-byte
  • integer, 8-byte
  • integers
  • integers, 16-bit
  • integers, 32-bit
  • integers, binary
  • integers, decimal
  • integers, hexadecimal
  • integers, octal
  • integers, one byte
  • internal as sections
  • invocation summary
  • irp directive
  • irpc directive
  • j

  • joining text and data sections
  • jump instructions, i386
  • jump optimization, i386
  • jump/call operands, i386
  • l

  • label (:)
  • labels
  • lcomm directive
  • ld
  • leafproc directive, i960
  • length of symbols
  • lflags directive (ignored)
  • line comment character
  • line comment character, Z8000
  • line directive
  • line numbers, in input files
  • line numbers, in warnings/errors
  • line separator character
  • line separator, Z8000
  • lines starting with #
  • linker
  • linker, and assembler
  • list directive
  • listing control, turning off
  • listing control, turning on
  • listing control: new page
  • listing control: paper size
  • listing control: subtitle
  • listing control: title line
  • listings, enabling
  • little endian output, MIPS
  • little-endian output, MIPS
  • ln directive
  • local common symbols
  • local labels, retaining in output
  • local symbol names
  • location counter
  • location counter, advancing
  • logical file name, logical file name
  • logical line number
  • logical line numbers
  • long directive
  • long directive, i386
  • lval
  • m

  • machine dependencies
  • machine directives, i960
  • machine directives, SPARC
  • machine independent directives
  • machine instructions (not covered)
  • machine-independent syntax
  • macro directive
  • macros
  • macros, count executed
  • manual, structure and purpose
  • memory references, i386
  • merging text and data sections
  • messages from as
  • minus, permitted arguments
  • MIPS architecture options
  • MIPS big-endian output
  • MIPS debugging directives
  • MIPS ECOFF sections
  • MIPS endianness
  • MIPS ISA
  • MIPS ISA override
  • MIPS little-endian output
  • MIPS R2000
  • MIPS R3000
  • MIPS R4000
  • MIPS R6000
  • mnemonics, Z8000
  • MRI compatibility mode
  • mul instruction, i386
  • multi-line statements
  • n

  • name
  • named section (COFF)
  • named sections
  • names, symbol
  • naming object file
  • new page, in listings
  • newline (\n)
  • newline, required at file end
  • nolist directive
  • null-terminated strings
  • number constants
  • number of macros executed
  • numbered subsections
  • numbers, 16-bit
  • numeric values
  • o

  • object file
  • object file format
  • object file name
  • object file, after errors
  • obsolescent directives
  • octa directive
  • octal character code (\ddd)
  • octal integers
  • opcode naming, i386
  • opcode prefixes, i386
  • opcode suffixes, i386
  • opcode summary, Z8000
  • opcodes, i960
  • operand delimiters, i386
  • operands in expressions
  • operator precedence
  • operators, in expressions
  • operators, permitted arguments
  • option summary
  • options for i386 (none)
  • options for SPARC
  • options, all versions of as
  • options, command line
  • options, i960
  • options, PowerPC
  • options, Z8000
  • org directive
  • other attribute, of a.out symbol
  • output file
  • p

  • p2align directive
  • padding the location counter
  • padding the location counter given a power of two
  • padding the location counter given number of bytes
  • page, in listings
  • paper size, for listings
  • paths for .include
  • patterns, writing in memory
  • plus, permitted arguments
  • PowerPC options
  • PowerPC registers
  • PowerPC support
  • PowerPC syntax
  • precedence of operators
  • precision, floating point
  • prefix operators
  • prefixes, i386
  • preprocessing
  • preprocessing, turning on and off
  • primary attributes, COFF symbols
  • proc directive, SPARC
  • pseudo-ops, machine independent
  • psize directive
  • purpose of GNU as
  • q

  • quad directive
  • quad directive, i386
  • r

  • real-mode code, i386
  • register operands, i386
  • registers, i386
  • registers, PowerPC
  • registers, Z8000
  • relocation
  • relocation example
  • repeat prefixes, i386
  • rept directive
  • reserve directive, SPARC
  • return instructions, i386
  • rsect
  • s

  • sbttl directive
  • scl directive
  • search path for .include
  • section directive
  • section override prefixes, i386
  • section-relative addressing
  • sections
  • sections in messages, internal
  • sections, i386
  • sections, named
  • seg directive, SPARC
  • segm
  • set directive
  • short directive
  • single character constant
  • single directive
  • single directive, i386
  • sixteen bit integers
  • sixteen byte integer
  • size directive
  • size prefixes, i386
  • sizes operands, i386
  • skip directive, SPARC
  • small objects, MIPS ECOFF
  • SOM symbol attributes
  • source program
  • source, destination operands; i386
  • space directive
  • space used, maximum for assembly
  • SPARC architectures
  • SPARC floating point (IEEE)
  • SPARC machine directives
  • SPARC options
  • SPARC support
  • stabd directive
  • stabn directive
  • stabs directive
  • stabx directives
  • standard as sections
  • standard input, as input file
  • statement on multiple lines
  • statement separator character
  • statement separator, Z8000
  • statements, structure of
  • statistics, about assembly
  • stopping the assembly
  • string constants
  • string directive
  • string directive on HPPA
  • string literals
  • string, copying to object file
  • structure debugging, COFF
  • subexpressions
  • subtitles for listings
  • subtraction, permitted arguments
  • summary of options
  • support
  • supporting files, including
  • suppressing warnings
  • sval
  • symbol attributes
  • symbol attributes, a.out
  • symbol attributes, COFF
  • symbol attributes, SOM
  • symbol descriptor, COFF
  • symbol names
  • symbol names, local
  • symbol names, temporary
  • symbol storage class (COFF)
  • symbol type
  • symbol type, COFF
  • symbol value
  • symbol value, setting
  • symbol values, assigning
  • symbol, common
  • symbol, making visible to linker
  • symbolic debuggers, information for
  • symbols
  • symbols, assigning values to
  • symbols, local common
  • syntax compatibility, i386
  • syntax, machine-independent
  • syntax, PowerPC
  • sysproc directive, i960
  • t

  • tab (\t)
  • tag directive
  • temporary symbol names
  • text and data sections, joining
  • text directive
  • text section
  • tfloat directive, i386
  • time, total for assembly
  • title directive
  • trusted compiler
  • turning preprocessing on and off
  • type directive
  • type of a symbol
  • u

  • undefined section
  • unsegm
  • v

  • val directive
  • value attribute, COFF
  • value of a symbol
  • version of as
  • w

  • warning for altered difference tables
  • warning messages
  • warnings, suppressing
  • whitespace
  • whitespace, removed by preprocessor
  • word directive
  • word directive, i386
  • word directive, SPARC
  • writing patterns in memory
  • wval
  • x

  • xword directive, SPARC
  • z

  • Z800 addressing modes
  • Z8000 directives
  • Z8000 line comment character
  • Z8000 line separator
  • Z8000 opcode summary
  • Z8000 options
  • Z8000 registers
  • Z8000 support
  • zero-terminated strings

  • This document was generated on 22 March 1999 using the texi2html translator version 1.52.