#include #include #include #include "libxxusb.h" /* 03/09/06 Release 3.00 changes */ /* ******** xxusb_longstack_execute ************************ Executes stack array passed to the function and returns the data read from the VME bus Paramters: hdev: USB device handle returned from an open function DataBuffer: pointer to the dual use buffer when calling , DataBuffer contains (unsigned short) stack data, with first word serving as a placeholder upon successful return, DataBuffer contains (unsigned short) VME data lDataLen: The number of bytes to be fetched from VME bus - not less than the actual number expected, or the function will return -5 code. For stack consisting only of write operations, lDataLen may be set to 1. timeout: The time in ms that should be spent tryimg to write data. Returns: When Successful, the number of bytes read from xxusb. Upon failure, a negative number Note: The function must pass a pointer to an array of unsigned integer stack data, in which the first word is left empty to serve as a placeholder. The function is intended for executing long stacks, up to 4 MBytes long, both "write" and "read" oriented, such as using multi-block transfer operations. Structure upon call: DataBuffer(0) = 0(don't care place holder) DataBuffer(1) = (unsigned short)StackLength bits 0-15 DataBuffer(2) = (unsigned short)StackLength bits 16-20 DataBuffer(3 - StackLength +2) (unsigned short) stack data StackLength represents the number of words following DataBuffer(1) word, thus the total number of words is StackLength+2 Structure upon return: DataBuffer(0 - (ReturnValue/2-1)) - (unsigned short)array of returned data when ReturnValue>0 */ int xxusb_longstack_execute(usb_dev_handle *hDev, void *DataBuffer, int lDataLen, int timeout) { int ret; char *cbuf; unsigned short *usbuf; int bufsize; cbuf = (char *)DataBuffer; usbuf = (unsigned short *)DataBuffer; cbuf[0]=12; cbuf[1]=0; bufsize = 2*(usbuf[1]+0x10000*usbuf[2])+4; ret=usb_bulk_write(hDev, XXUSB_ENDPOINT_OUT, cbuf, bufsize, timeout); if (ret>0) ret=usb_bulk_read(hDev, XXUSB_ENDPOINT_IN, cbuf, lDataLen, timeout); return ret; } /* ******** xxusb_bulk_read ************************ Reads the content of the usbfifo whenever "FIFO full" flag is set, otherwise times out. Paramters: hdev: USB device handle returned from an open function DataBuffer: pointer to an array to store data that is read from the VME bus; the array may be declared as byte, unsigned short, or unsigned long lDatalen: The number of bytes to read from xxusb timeout: The time in ms that should be spent waiting for data. Returns: When Successful, the number of bytes read from xxusb. Upon failure, a negative number Note: Depending upon the actual need, the function may be used to return the data in a form of an array of bytes, unsigned short integers (16 bits), or unsigned long integers (32 bits). The latter option of passing a pointer to an array of unsigned long integers is meaningful when xxusb data buffering option is used (bit 7=128 of the global register) that requires data 32-bit data alignment. */ int xxusb_bulk_read(usb_dev_handle *hDev, void *DataBuffer, int lDataLen, int timeout) { int ret; char *cbuf; cbuf = (char *)DataBuffer; ret = usb_bulk_read(hDev, XXUSB_ENDPOINT_IN, cbuf, lDataLen, timeout); return ret; } /* ******** xxusb_bulk_write ************************ Writes the content of an array of bytes, unsigned short integers, or unsigned long integers to the USB port fifo; times out when the USB fifo is full (e.g., when xxusb is busy). Paramters: hdev: USB device handle returned from an open function DataBuffer: pointer to an array storing the data to be sent; the array may be declared as byte, unsigned short, or unsigned long lDatalen: The number of bytes to to send to xxusb timeout: The time in ms that should be spent waiting for data. Returns: When Successful, the number of bytes passed to xxusb. Upon failure, a negative number Note: Depending upon the actual need, the function may be used to pass to xxusb the data in a form of an array of bytes, unsigned short integers (16 bits), or unsigned long integers (32 bits). */ int xxusb_bulk_write(usb_dev_handle *hDev, void *DataBuffer, int lDataLen, int timeout) { int ret; char *cbuf; cbuf = (char *)DataBuffer; ret = usb_bulk_write(hDev, XXUSB_ENDPOINT_OUT, cbuf, lDataLen, timeout); return ret; } /* ******** xxusb_usbfifo_read ************************ Reads data stored in the xxusb fifo and packs them in an array of long integers. Paramters: hdev: USB device handle returned from an open function DataBuffer: pointer to an array of long to store data that is read the data occupy only the least significant 16 bits of the 32-bit data words lDatalen: The number of bytes to read from the xxusb timeout: The time in ms that should be spent waiting for data. Returns: When Successful, the number of bytes read from xxusb. Upon failure, a negative number Note: The function is not economical as it wastes half of the space required for storing the data received. Also, it is relatively slow, as it performs extensive data repacking. It is recommended to use xxusb_bulk_read with a pointer to an array of unsigned short integers. */ int xxusb_usbfifo_read(usb_dev_handle *hDev, int *DataBuffer, int lDataLen, int timeout) { int ret; char *cbuf; unsigned short *usbuf; int i; cbuf = (char *)DataBuffer; usbuf = (unsigned short *)DataBuffer; ret = usb_bulk_read(hDev, XXUSB_ENDPOINT_IN, cbuf, lDataLen, timeout); if (ret > 0) for (i=ret/2-1; i >= 0; i=i-1) { usbuf[i*2]=usbuf[i]; usbuf[i*2+1]=0; } return ret; } //******************************************************// //******************* GENERAL XX_USB *******************// //******************************************************// // The following are functions used for both VM_USB & CC_USB /* ******** xxusb_register_write ************************ Writes Data to the xxusb register selected by RedAddr. For acceptable values for RegData and RegAddr see the manual the module you are using. Parameters: hdev: usb device handle returned from open device RegAddr: The internal address if the xxusb RegData: The Data to be written to the register Returns: Number of bytes sent to xxusb if successful 0 if the register is write only Negative numbers if the call fails */ short xxusb_register_write(usb_dev_handle *hDev, short RegAddr, long RegData) { long RegD; char buf[8]={5,0,0,0,0,0,0,0}; int ret; int lDataLen; int timeout; if ((RegAddr==0) || (RegAddr==12) || (RegAddr==15)) return 0; buf[2]=(char)(RegAddr & 15); buf[4]=(char)(RegData & 255); RegD = RegData >> 8; buf[5]=(char)(RegD & 255); RegD = RegD >>8; if (RegAddr==8) { buf[6]=(char)(RegD & 255); lDataLen=8; } else lDataLen=6; timeout=10; ret=xxusb_bulk_write(hDev, buf, lDataLen, timeout); return ret; } /* ******** xxusb_stack_write ************************ Writes a stack of VME/CAMAC calls to the VM_USB/CC_USB to be executed upon trigger. Parameters: hdev: usb device handle returned from an open function StackAddr: internal register to which the stack should be written lpStackData: Pointer to an array holding the stack Returns: The number of Bytes written to the xxusb when successful A negative number upon failure */ short xxusb_stack_write(usb_dev_handle *hDev, short StackAddr, long *intbuf) { int timeout; short ret; short lDataLen; char buf[2000]; short i; int bufsize; buf[0]=(char)((StackAddr & 51) + 4); buf[1]=0; lDataLen=(short)(intbuf[0] & 0xFFF); buf[2]=(char)(lDataLen & 255); lDataLen = lDataLen >> 8; buf[3] = (char)(lDataLen & 255); bufsize=intbuf[0]*2+4; if (intbuf[0]==0) return 0; for (i=1; i <= intbuf[0]; i++) { buf[2+2*i] = (char)(intbuf[i] & 255); buf[3+2*i] = (char)((intbuf[i] >>8) & 255); } timeout=50; ret=usb_bulk_write(hDev, XXUSB_ENDPOINT_OUT, buf, bufsize, timeout); return ret; } /* ******** xxusb_stack_execute ********************** Writes, executes and returns the value of a DAQ stack. Parameters: hdev: USB device handle returned from an open function intbuf: Pointer to an array holding the values stack. Upon return Pointer value is the Data returned from the stack. Returns: When successful, the number of Bytes read from xxusb Upon Failure, a negative number. */ short xxusb_stack_execute(usb_dev_handle *hDev, long *intbuf) { int timeout; short ret; short lDataLen; char buf[26700]; short i; int bufsize; int ii = 0; buf[0]=12; buf[1]=0; lDataLen=(short)(intbuf[0] & 0xFFF); buf[2]=(char)(lDataLen & 255); lDataLen = lDataLen >> 8; buf[3] = (char)(lDataLen & 15); bufsize=intbuf[0]*2+4; if (intbuf[0]==0) return 0; for (i=1; i <= intbuf[0]; i++) { buf[2+2*i] = (char)(intbuf[i] & 255); buf[3+2*i] = (char)((intbuf[i] >>8) & 255); } timeout=1000; ret=usb_bulk_write(hDev, XXUSB_ENDPOINT_OUT, buf, bufsize, timeout); if (ret>0) { lDataLen=26700; timeout=1000; ret=usb_bulk_read(hDev, XXUSB_ENDPOINT_IN, buf, lDataLen, timeout); if (ret>0) for (i=0; i < ret; i=i+2) intbuf[ii++]=(UCHAR)(buf[i]) +(UCHAR)( buf[i+1])*256; } return ret; } /* ******** xxusb_stack_read ************************ Reads the current DAQ stack stored by xxusb Parameters: hdev: USB device handle returned by an open function StackAddr: Indicates which stack to read, primary or secondary intbuf: Pointer to a array where the stack can be stored Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short xxusb_stack_read(usb_dev_handle *hDev, short StackAddr, long *intbuf) { int timeout; short ret; short lDataLen; short bufsize; char buf[2048]; int i; buf[0]=(char)(StackAddr & 51); buf[1]=0; lDataLen = 2; timeout=100; ret=usb_bulk_write(hDev, XXUSB_ENDPOINT_OUT, buf, lDataLen, timeout); if (ret < 0) return ret; else bufsize=2048; int ii=0; { ret=usb_bulk_read(hDev, XXUSB_ENDPOINT_IN, buf, bufsize, timeout); if (ret>0) for (i=0; i < ret; i=i+2) intbuf[ii++]=(UCHAR)(buf[i]) + (UCHAR)(buf[i+1])*256; return ret; } } /* ******** xxusb_register_read ************************ Reads the current contents of an internal xxusb register Parameters: hdev: USB device handle returned from an open function RegAddr: The internal address of the register from which to read RegData: Pointer to a long to hold the data. Returns: When Successful, the number of bytes read from xxusb. Upon failure, a negative number */ short xxusb_register_read(usb_dev_handle *hDev, short RegAddr, long *RegData) { //long RegD; int timeout; char buf[4]={1,0,0,0}; int ret; int lDataLen; buf[2]=(char)(RegAddr & 15); timeout=10; lDataLen=4; ret=xxusb_bulk_write(hDev, buf, lDataLen, timeout); if (ret < 0) return (short)ret; else { lDataLen=8; timeout=100; ret=xxusb_bulk_read(hDev, buf, lDataLen, timeout); if (ret<0) return (short)ret; else { *RegData=(UCHAR)(buf[0])+256*(UCHAR)(buf[1]); if (ret==4) *RegData=*RegData+0x10000*(UCHAR)(buf[2]); return (short)ret; } } } /* ******** xxusb_reset_toggle ************************ Toggles the reset state of the FPGA while the xxusb in programming mode Parameters hdev: US B device handle returned from an open function Returns: Upon failure, a negative number */ short xxusb_reset_toggle(usb_dev_handle *hDev) { short ret; char buf[2] = {(char)255,(char)255}; int lDataLen=2; int timeout=1000; ret = usb_bulk_write(hDev, XXUSB_ENDPOINT_OUT, buf,lDataLen, timeout); return (short)ret; } /* ******** xxusb_devices_find ************************ Determines the number and parameters of all xxusb devices attched to the computer. Parameters: xxdev: pointer to an array on which the device parameters are stored Returns: Upon success, returns the number of devices found Upon Failure returns a negative number */ short xxusb_devices_find(xxusb_device_type *xxdev) { short DevFound = 0; usb_dev_handle *udev; struct usb_bus *bus; struct usb_device *dev; struct usb_bus *usb_busses; char string[256]; short ret; usb_init(); usb_find_busses(); usb_busses=usb_get_busses(); usb_find_devices(); for (bus=usb_busses; bus; bus = bus->next) { for (dev = bus->devices; dev; dev= dev->next) { if (dev->descriptor.idVendor==XXUSB_WIENER_VENDOR_ID) { udev = usb_open(dev); if (udev) { ret = usb_get_string_simple(udev, dev->descriptor.iSerialNumber, string, sizeof(string)); if (ret >0 ) { xxdev[DevFound].usbdev=dev; strcpy(xxdev[DevFound].SerialString, string); DevFound++; } usb_close(udev); } else return -1; } } } return DevFound; } /* ******** xxusb_device_close ************************ Closes an xxusb device Parameters: hdev: USB device handle returned from an open function Returns: 1 */ short xxusb_device_close(usb_dev_handle *hDev) { short ret; ret=usb_release_interface(hDev,0); usb_close(hDev); return 1; } /* ******** xxusb_device_open ************************ Opens an xxusb device found by xxusb_device_find Parameters: dev: a usb device Returns: A USB device handle */ usb_dev_handle* xxusb_device_open(struct usb_device *dev) { short ret; usb_dev_handle *udev; udev = usb_open(dev); ret = usb_set_configuration(udev,1); ret = usb_claim_interface(udev,0); ret=usb_clear_halt(udev,0x86); ret=usb_clear_halt(udev,2); return udev; } /* ******** xxusb_flashblock_program ************************ --Untested and therefore uncommented-- */ short xxusb_flashblock_program(usb_dev_handle *hDev, UCHAR *config) { int k=0; short ret=0; UCHAR *pconfig; char *pbuf; pconfig=config; char buf[518] ={(char)0xAA,(char)0xAA,(char)0x55,(char)0x55,(char)0xA0,(char)0xA0}; pbuf=buf+6; for (k=0; k<256; k++) { *(pbuf++)=(UCHAR)(*(pconfig)); *(pbuf++)=(UCHAR)(*(pconfig++)); } ret = usb_bulk_write(hDev, XXUSB_ENDPOINT_OUT, buf, 518, 2000); return ret; } /* ******** xxusb_serial_open ************************ Opens a xxusb device whose serial number is given Parameters: SerialString: a char string that gives the serial number of the device you wish to open. It takes the form: VM0009 - for a vm_usb with serial number 9 or CC0009 - for a cc_usb with serial number 9 Returns: A USB device handle */ usb_dev_handle* xxusb_serial_open(char *SerialString) { //short DevFound = 0; usb_dev_handle *udev = NULL; struct usb_bus *bus; struct usb_device *dev; struct usb_bus *usb_busses; char string[7]; short ret; // usb_set_debug(4); usb_init(); usb_find_busses(); usb_busses=usb_get_busses(); usb_find_devices(); for (bus=usb_busses; bus; bus = bus->next) { for (dev = bus->devices; dev; dev= dev->next) { if (dev->descriptor.idVendor==XXUSB_WIENER_VENDOR_ID) { udev = xxusb_device_open(dev); if (udev) { ret = usb_get_string_simple(udev, dev->descriptor.iSerialNumber, string, sizeof(string)); if (ret >0 ) { if(!SerialString) return udev; if (strcmp(string,SerialString)==0) return udev; } usb_close(udev); } } } } udev = NULL; return udev; } //******************************************************// //****************** EZ_VME Functions ******************// //******************************************************// // The following are functions used to perform simple // VME Functions with the VM_USB /* ******** VME_write_32 ************************ Writes a 32 bit data word to the VME bus Parameters: hdev: USB devcie handle returned from an open function Address_Modifier: VME address modifier for the VME call VME_Address: Address to write the data to Data: 32 bit data word to be written to VME_Address Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_write_32(usb_dev_handle *hdev, short Address_Modifier, long VME_Address, long Data) { long intbuf[1000]; short ret; intbuf[0]=7; intbuf[1]=0; intbuf[2]=Address_Modifier; intbuf[3]=0; intbuf[4]=(VME_Address & 0xffff); intbuf[5]=((VME_Address >>16) & 0xffff); intbuf[6]=(Data & 0xffff); intbuf[7]=((Data >> 16) & 0xffff); ret = xxusb_stack_execute(hdev, intbuf); return ret; } /* ******** VME_read_32 ************************ Reads a 32 bit data word from a VME address Parameters: hdev: USB devcie handle returned from an open function Address_Modifier: VME address modifier for the VME call VME_Address: Address to read the data from Data: 32 bit data word read from VME_Address Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_read_32(usb_dev_handle *hdev, short Address_Modifier, long VME_Address, long *Data) { long intbuf[1000]; short ret; intbuf[0]=5; intbuf[1]=0; intbuf[2]=Address_Modifier +0x100; intbuf[3]=0; intbuf[4]=(VME_Address & 0xffff); intbuf[5]=((VME_Address >>16) & 0xffff); ret = xxusb_stack_execute(hdev, intbuf); *Data=intbuf[0] + (intbuf[1] * 0x10000); return ret; } /* ******** VME_write_16 ************************ Writes a 16 bit data word to the VME bus Parameters: hdev: USB devcie handle returned from an open function Address_Modifier: VME address modifier for the VME call VME_Address: Address to write the data to Data: word to be written to VME_Address Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_write_16(usb_dev_handle *hdev, short Address_Modifier, long VME_Address, long Data) { long intbuf[1000]; short ret; intbuf[0]=7; intbuf[1]=0; intbuf[2]=Address_Modifier; intbuf[3]=0; intbuf[4]=(VME_Address & 0xffff)+ 0x01; intbuf[5]=((VME_Address >>16) & 0xffff); intbuf[6]=(Data & 0xffff); intbuf[7]=0; ret = xxusb_stack_execute(hdev, intbuf); return ret; } /* ******** VME_read_16 ************************ Reads a 16 bit data word from a VME address Parameters: hdev: USB devcie handle returned from an open function Address_Modifier: VME address modifier for the VME call VME_Address: Address to read the data from Data: word read from VME_Address Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_read_16(usb_dev_handle *hdev,short Address_Modifier, long VME_Address, long *Data) { long intbuf[1000]; short ret; intbuf[0]=5; intbuf[1]=0; intbuf[2]=Address_Modifier +0x100; intbuf[3]=0; intbuf[4]=(VME_Address & 0xffff)+ 0x01; intbuf[5]=((VME_Address >>16) & 0xffff); ret = xxusb_stack_execute(hdev, intbuf); *Data=intbuf[0]; return ret; } /* ******** VME_BLT_read_32 ************************ Performs block transfer of 32 bit words from a VME address Parameters: hdev: USB devcie handle returned from an open function Address_Modifier: VME address modifier for the VME call count: number of data words to read VME_Address: Address to read the data from Data: pointer to an array to hold the data words Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_BLT_read_32(usb_dev_handle *hdev, short Adress_Modifier, int count, long VME_Address, long Data[]) { long intbuf[1000]; short ret; int i=0; if (count > 255) return -1; intbuf[0]=5; intbuf[1]=0; intbuf[2]=Adress_Modifier +0x100; intbuf[3]=(count << 8); intbuf[4]=(VME_Address & 0xffff); intbuf[5]=((VME_Address >>16) & 0xffff); ret = xxusb_stack_execute(hdev, intbuf); int j=0; for (i=0;i<(2*count);i=i+2) { Data[j]=intbuf[i] + (intbuf[i+1] * 0x10000); j++; } return ret; } //******************************************************// //****************** VM_USB Registers ******************// //******************************************************// // The following are functions used to set the registers // in the VM_USB /* ******** VME_register_write ************************ Writes to the vmusb registers that are accessible through VME style calls Parameters: hdev: USB devcie handle returned from an open function VME_Address: The VME Address of the internal register Data: Data to be written to VME_Address Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_register_write(usb_dev_handle *hdev, long VME_Address, long Data) { long intbuf[1000]; short ret; intbuf[0]=7; intbuf[1]=0; intbuf[2]=0x1000; intbuf[3]=0; intbuf[4]=(VME_Address & 0xffff); intbuf[5]=((VME_Address >>16) & 0xffff); intbuf[6]=(Data & 0xffff); intbuf[7]=((Data >> 16) & 0xffff); ret = xxusb_stack_execute(hdev, intbuf); return ret; } /* ******** VME_register_read ************************ Reads from the vmusb registers that are accessible trough VME style calls Parameters: hdev: USB devcie handle returned from an open function VME_Address: The VME Address of the internal register Data: Data read from VME_Address Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_register_read(usb_dev_handle *hdev, long VME_Address, long *Data) { long intbuf[1000]; short ret; intbuf[0]=5; intbuf[1]=0; intbuf[2]=0x1100; intbuf[3]=0; intbuf[4]=(VME_Address & 0xffff); intbuf[5]=((VME_Address >>16) & 0xffff); ret = xxusb_stack_execute(hdev, intbuf); *Data=intbuf[0] + (intbuf[1] * 0x10000); return ret; } /* ******** VME_LED_settings ************************ Sets the vmusb LED's Parameters: hdev: USB devcie handle returned from an open function LED: The number which corresponds to an LED values are: 0 - for Top YELLOW LED 1 - for RED LED 2 - for GREEN LED 3 - for Bottom YELLOW LED code: The LED aource selector code, valid values for each LED are listed in the manual invert: to invert the LED lighting latch: sets LED latch bit Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_LED_settings(usb_dev_handle *hdev, int LED, int code, int invert, int latch) { short ret; // long internal; long Data; if( (LED <0) ||(LED > 3) || (code < 0) || (code > 7)) return -1; VME_register_read(hdev,0xc,&Data); if(LED == 0) { Data = Data & 0xFFFFFF00; Data = Data | code; if (invert == 1 && latch == 1) Data = Data | 0x18; if (invert == 1 && latch == 0) Data = Data | 0x08; if (invert == 0 && latch == 1) Data = Data | 0x10; } if(LED == 1) { Data = Data & 0xFFFF00FF; Data = Data | (code * 0x0100); if (invert == 1 && latch == 1) Data = Data | 0x1800; if (invert == 1 && latch == 0) Data = Data | 0x0800; if (invert == 0 && latch == 1) Data = Data | 0x1000; } if(LED == 2) { Data = Data & 0xFF00FFFF; Data = Data | (code * 0x10000); if (invert == 1 && latch == 1) Data = Data | 0x180000; if (invert == 1 && latch == 0) Data = Data | 0x080000; if (invert == 0 && latch == 1) Data = Data | 0x100000; } if(LED == 3) { Data = Data & 0x00FFFFFF; Data = Data | (code * 0x10000); if (invert == 1 && latch == 1) Data = Data | 0x18000000; if (invert == 1 && latch == 0) Data = Data | 0x08000000; if (invert == 0 && latch == 1) Data = Data | 0x10000000; } ret = VME_register_write(hdev, 0xc, Data); return ret; } /* ******** VME_DGG ************************ Sets the parameters for Gate & Delay channel A of vmusb Parameters: hdev: USB devcie handle returned from an open function channel: Which DGG channel to use Valid Values are: 0 - For DGG A 1 - For DGG B trigger: Determines what triggers the start of the DGG Valid values are: 0 - Channel disabled 1 - NIM input 1 2 - NIM input 2 3 - Event Trigger 4 - End of Event 5 - USB Trigger 6 - Pulser output: Determines which NIM output to use for the channel, Vaild values are: 0 - for NIM O1 1 - for NIM O2 delay: 32 bit word consisting of lower 16 bits: Delay_fine in steps of 12.5ns between trigger and start of gate upper 16 bits: Delay_coarse in steps of 81.7us between trigger and start of gate gate: the time the gate should stay open in steps of 12.5ns invert: is 1 if you wish to invert the DGG channel output latch: is 1 if you wish to run the DGG channel latched Returns: Returns 1 when successful Upon failure, a negative number */ short VME_DGG(usb_dev_handle *hdev, unsigned short channel, unsigned short trigger, unsigned short output, long delay, unsigned short gate, unsigned short invert, unsigned short latch) { long Data, DGData, Delay_ext; long internal; short ret; ret = VME_register_read(hdev, 0x10, &Data); // check and correct values if(ret<=0) return -1; if(channel >1) channel =1; if(invert >1) invert =1; if(latch >1) latch =1; if(output >1) output =1; if(trigger >6) trigger =0; // define Delay and Gate data DGData = gate * 0x10000; DGData += (unsigned short) delay; // Set channel, output, invert, latch if (output == 0) { Data = Data & 0xFFFFFF00; Data += 0x04 + channel +0x08*invert + 0x10*latch; } if (output == 1) { Data = Data & 0xFFFF00FF; Data += (0x04 + channel +0x08*invert + 0x10*latch)*0x100; } // Set trigger, delay, gate if(channel ==0) // CHANNEL DGG_A { internal = (trigger * 0x1000000) ; Data= Data & 0xF0FFFFFF; Data += internal; ret = VME_register_write(hdev,0x10,Data); if(ret<=0) return -1; ret=VME_register_write(hdev,0x14,DGData); if(ret<=0) return -1; // Set coarse delay in DGG_Extended register ret = VME_register_read(hdev,0x38,&Data); Delay_ext= (delay & 0xffff0000)>>16 + Data & 0xffff0000; ret = VME_register_write(hdev,0x38,Data); } if( channel ==1) // CHANNEL DGG_B { internal = (trigger * 0x10000000) ; Data= Data & 0x0FFFFFFF; Data += internal; ret = VME_register_write(hdev,0x10,Data); if(ret<=0) return -1; ret=VME_register_write(hdev,0x18,DGData); if(ret<=0) return -1; // Set coarse delay in DGG_Extended register ret = VME_register_read(hdev,0x38,&Data); Delay_ext= delay & 0xffff0000 + Data & 0x0000ffff; ret = VME_register_write(hdev,0x38,Data); } return 1; } /* ******** VME_Output_settings ************************ Sets the vmusb NIM output register Parameters: hdev: USB devcie handle returned from an open function Channel: The number which corresponds to an output: 1 - for Output 1 2 - for Output 2 code: The Output selector code, valid values are listed in the manual invert: to invert the output latch: sets latch bit Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short VME_Output_settings(usb_dev_handle *hdev, int Channel, int code, int invert, int latch) { short ret; // long internal; long Data; if( (Channel <1) ||(Channel > 2) || (code < 0) || (code > 7)) return -1; VME_register_read(hdev,0x10,&Data); if(Channel == 1) { Data = Data & 0xFFFF00; Data = Data | code; if (invert == 1 && latch == 1) Data = Data | 0x18; if (invert == 1 && latch == 0) Data = Data | 0x08; if (invert == 0 && latch == 1) Data = Data | 0x10; } if(Channel == 2) { Data = Data & 0xFF00FF; Data = Data | (code * 0x0100); if (invert == 1 && latch == 1) Data = Data | 0x1800; if (invert == 1 && latch == 0) Data = Data | 0x0800; if (invert == 0 && latch == 1) Data = Data | 0x1000; } ret = VME_register_write(hdev, 0x10, Data); return ret; } //******************************************************// //****************** CC_USB Registers ******************// //******************************************************// // The following are functions used to set the registers // in the CAMAC_USB /* ******** CAMAC_register_write ***************** Performs a CAMAC write to CC_USB register Parameters: hdev: USB device handle returned from an open function A: CAMAC Subaddress F: CAMAC Function Data: data to be written Returns: Number of bytes written to xxusb when successful Upon failure, a negative number */ short CAMAC_register_write(usb_dev_handle *hdev, int A, long Data) { int F = 16; int N = 25; long intbuf[4]; int ret; intbuf[0]=1; intbuf[1]=(long)(F+A*32+N*512 + 0x4000); intbuf[0]=3; intbuf[2]=(Data & 0xffff); intbuf[3]=((Data >>16) & 0xffff); ret = xxusb_stack_execute(hdev, intbuf); return ret; } /* ******** CAMAC_register_read ************************ Performs a CAMAC read from CC_USB register Parameters: hdev: USB device handle returned from an open function N: CAMAC Station Number A: CAMAC Subaddress F: CAMAC Function Q: The Q response from the CAMAC dataway X: The comment accepted response from CAMAC dataway Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short CAMAC_register_read(usb_dev_handle *hdev, int A, long *Data) { int F = 0; int N = 25; long intbuf[4]; int ret; intbuf[0]=1; intbuf[1]=(long)(F+A*32+N*512 + 0x4000); ret = xxusb_stack_execute(hdev, intbuf); *Data=intbuf[0] + (intbuf[1] * 0x10000); return ret; } /* ******** CAMAC_DGG ************************ Sets the parameters for Gate & Delay channel A of CC_USB Parameters: hdev: USB devcie handle returned from an open function channel: Which DGG channel to use Valid Values are: 0 - For DGG A 1 - For DGG B trigger: Determines what triggers the start of the DGG Valid values are: 0 - Channel disabled 1 - NIM input 1 2 - NIM input 2 3 - Event Trigger 4 - End of Event 5 - USB Trigger output: Determines which NIM output to use for the channel, Vaild values are: 1 - for NIM O1 2 - for NIM O2 3 - for NIM O3 delay: Delay in steps of 12.5ns between trigger and start of gate gate: the time the gate should stay open in steps of 12.5ns invert: is 1 if you wish to invert the DGG channel output latch: is 1 if you wish to run the DGG channel latched Returns: Returns 1 when successful Upon failure, a negative number */ short CAMAC_DGG(usb_dev_handle *hdev, short channel, short trigger, short output, int delay, int gate, short invert, short latch) { // short channel_ID; long Data; long internal=0; short ret; ret = CAMAC_register_read(hdev,5,&Data); //Set trigger if((output < 1 ) || (output >3) || (channel < 0 ) || (channel > 1)) return -1; if(output ==1) { if(channel ==0) { internal = 0x03; } else { internal = 0x04; } } if(output ==2) { if(channel ==0) { internal = 0x04; } else { internal = 0x05; } } if(output ==3) { if(channel ==0) { internal = 0x05; } else { internal = 0x06; } } // Set invert bit if(invert ==1) internal = internal | 0x10; else internal = internal & 0x0F; // Set Latch Bit if(latch==1) internal = internal | 0x20; else internal = internal & 0x1F; // Add new data to old if(output == 1) { Data = Data & 0xFFFF00; Data = Data | internal; } if(output == 2) { Data = Data & 0xFF00FF; Data = Data |(internal * 0x100); } if(output == 3) { Data = Data & 0x00FFFF; Data = Data | (internal * 0x10000) ; } CAMAC_register_write(hdev, 5, Data); ret = CAMAC_register_read(hdev,6,&Data); //Set Trigger if(trigger <0 || trigger > 5) return -1; if(channel ==0) { Data = Data & 0xFF00FFFF; internal = trigger * 0x10000; Data = Data | internal; } else { Data = Data & 0x00FFFFFF; internal = trigger * 0x1000000; Data = Data | internal; } ret = CAMAC_register_write(hdev, 6, Data); // Write Delay and Gate info internal = gate * 0x10000; Data = internal | delay; if(channel == 0) { ret=CAMAC_register_write(hdev,7,Data); } else { ret=CAMAC_register_write(hdev,8,Data); } if(ret<=0) return -1; return 1; } /* ******** CAMAC_LED_settings ************************ Writes a data word to the vmusb LED register Parameters: hdev: USB devcie handle returned from an open function LED: The number which corresponds to an LED values are: 1 - for RED LED 2 - for GREEN LED 3 - for Yellow LED code: The LED aource selector code, valid values for each LED are listed in the manual invert: to invert the LED lighting latch: sets LED latch bit Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short CAMAC_LED_settings(usb_dev_handle *hdev, int LED, int code, int invert, int latch) { short ret; // long internal; long Data; if( (LED <1) ||(LED > 3) || (code < 0) || (code > 7)) return -1; CAMAC_register_read(hdev,4,&Data); if(LED == 1) { Data = Data & 0xFFFF00; Data = Data | code; if (invert == 1 && latch == 1) Data = Data | 0x30; if (invert == 1 && latch == 0) Data = Data | 0x10; if (invert == 0 && latch == 1) Data = Data | 0x20; } if(LED == 2) { Data = Data & 0xFF00FF; Data = Data | (code * 0x0100); if (invert == 1 && latch == 1) Data = Data | 0x3000; if (invert == 1 && latch == 0) Data = Data | 0x1000; if (invert == 0 && latch == 1) Data = Data | 0x2000; } if(LED == 3) { Data = Data & 0x00FFFF; Data = Data | (code * 0x10000); if (invert == 1 && latch == 1) Data = Data | 0x300000; if (invert == 1 && latch == 0) Data = Data | 0x100000; if (invert == 0 && latch == 1) Data = Data | 0x200000; } ret = CAMAC_register_write(hdev, 4, Data); return ret; } /* ******** CAMAC_Output_settings ************************ Writes a data word to the vmusb LED register Parameters: hdev: USB devcie handle returned from an open function Channel: The number which corresponds to an output: 1 - for Output 1 2 - for Output 2 3 - for Output 3 code: The Output selector code, valid values are listed in the manual invert: to invert the output latch: sets latch bit Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short CAMAC_Output_settings(usb_dev_handle *hdev, int Channel, int code, int invert, int latch) { short ret; // long internal; long Data; if( (Channel <1) ||(Channel > 3) || (code < 0) || (code > 7)) return -1; CAMAC_register_read(hdev,5,&Data); if(Channel == 1) { Data = Data & 0xFFFF00; Data = Data | code; if (invert == 1 && latch == 1) Data = Data | 0x30; if (invert == 1 && latch == 0) Data = Data | 0x10; if (invert == 0 && latch == 1) Data = Data | 0x20; } if(Channel == 2) { Data = Data & 0xFF00FF; Data = Data | (code * 0x0100); if (invert == 1 && latch == 1) Data = Data | 0x3000; if (invert == 1 && latch == 0) Data = Data | 0x1000; if (invert == 0 && latch == 1) Data = Data | 0x2000; } if(Channel == 3) { Data = Data & 0x00FFFF; Data = Data | (code * 0x10000); if (invert == 1 && latch == 1) Data = Data | 0x300000; if (invert == 1 && latch == 0) Data = Data | 0x100000; if (invert == 0 && latch == 1) Data = Data | 0x200000; } ret = CAMAC_register_write(hdev, 5, Data); return ret; } /* ******** CAMAC_write_LAM_mask ************************ Writes the data word to the LAM mask register Parameters: hdev: USB devcie handle returned from an open function Data: LAM mask to write Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short CAMAC_write_LAM_mask(usb_dev_handle *hdev, long Data) { short ret; ret = CAMAC_register_write(hdev, 9, Data); return ret; } /* ******** CAMAC_read_LAM_mask ************************ Writes the data word to the LAM mask register Parameters: hdev: USB devcie handle returned from an open function Data: LAM mask to write Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short CAMAC_read_LAM_mask(usb_dev_handle *hdev, long *Data) { long intbuf[4]; int ret; int N = 25; int F = 0; int A = 9; // CAMAC direct read function intbuf[0]=1; intbuf[1]=(long)(F+A*32+N*512 + 0x4000); ret = xxusb_stack_execute(hdev, intbuf); *Data=intbuf[0] + (intbuf[1] & 255) * 0x10000; return ret; } //******************************************************// //**************** EZ_CAMAC Functions ******************// //******************************************************// // The following are functions used to perform simple // CAMAC Functions with the CC_USB /* ******** CAMAC_write ************************ Performs a CAMAC write using NAF comments Parameters: hdev: USB device handle returned from an open function N: CAMAC Station Number A: CAMAC Subaddress F: CAMAC Function Q: The Q response from the CAMAC dataway X: The comment accepted response from CAMAC dataway Returns: Number of bytes written to xxusb when successful Upon failure, a negative number */ short CAMAC_write(usb_dev_handle *hdev, int N, int A, int F, long Data, int *Q, int *X) { long intbuf[4]; int ret=0; // CAMAC direct write function intbuf[0]=1; intbuf[1]=(long)(F+A*32+N*512 + 0x4000); if ((F > 15) && (F < 32)) { intbuf[0]=3; intbuf[2]=(Data & 0xffff); intbuf[3]=((Data >>16) & 255); ret = xxusb_stack_execute(hdev, intbuf); *Q = (intbuf[0] & 1); *X = ((intbuf[0] >> 1) & 1); } return ret; } /* ******** CAMAC_read ************************ Performs a CAMAC read using NAF comments Parameters: hdev: USB device handle returned from an open function N: CAMAC Station Number A: CAMAC Subaddress F: CAMAC Function Q: The Q response from the CAMAC dataway X: The comment accepted response from CAMAC dataway Returns: Number of bytes read from xxusb when successful Upon failure, a negative number */ short CAMAC_read(usb_dev_handle *hdev, int N, int A, int F, long *Data, int *Q, int *X) { long intbuf[4]; int ret; // CAMAC direct read function intbuf[0]=1; intbuf[1]=(long)(F+A*32+N*512 + 0x4000); ret = xxusb_stack_execute(hdev, intbuf); if (F < 16) { *Data=intbuf[0] + (intbuf[1] & 255) * 0x10000; //24-bit word *Q = ((intbuf[1] >> 8) & 1); *X = ((intbuf[1] >> 9) & 1); } return ret; } /* ******** CAMAC_Z ************************ Performs a CAMAC init Parameters: hdev: USB device handle returned from an open function Returns: Number of bytes written to xxusb when successful Upon failure, a negative number */ short CAMAC_Z(usb_dev_handle *hdev) { long intbuf[4]; int ret; // CAMAC Z = N(28) A(8) F(29) intbuf[0]=1; intbuf[1]=(long)(29+8*32+28*512 + 0x4000); ret = xxusb_stack_execute(hdev, intbuf); return ret; } /* ******** CAMAC_C ************************ Performs a CAMAC clear Parameters: hdev: USB device handle returned from an open function Returns: Number of bytes written to xxusb when successful Upon failure, a negative number */ short CAMAC_C(usb_dev_handle *hdev) { long intbuf[4]; int ret; intbuf[0]=1; intbuf[1]=(long)(29+9*32+28*512 + 0x4000); ret = xxusb_stack_execute(hdev, intbuf); return ret; } /* ******** CAMAC_I ************************ Set CAMAC inhibit Parameters: hdev: USB device handle returned from an open function Returns: Number of bytes written to xxusb when successful Upon failure, a negative number */ short CAMAC_I(usb_dev_handle *hdev, int inhibit) { long intbuf[4]; int ret; intbuf[0]=1; if (inhibit) intbuf[1]=(long)(24+9*32+29*512 + 0x4000); else intbuf[1]=(long)(26+9*32+29*512 + 0x4000); ret = xxusb_stack_execute(hdev, intbuf); return ret; }