/* * Handle firewalling * Linux ethernet bridge * * Authors: * Lennert Buytenhek * Bart De Schuymer * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Lennert dedicates this file to Kerstin Wurdinger. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "br_private.h" #ifdef CONFIG_SYSCTL #include #endif #define skb_origaddr(skb) (((struct bridge_skb_cb *) \ (skb->nf_bridge->data))->daddr.ipv4) #define store_orig_dstaddr(skb) (skb_origaddr(skb) = ip_hdr(skb)->daddr) #define dnat_took_place(skb) (skb_origaddr(skb) != ip_hdr(skb)->daddr) #ifdef CONFIG_SYSCTL static struct ctl_table_header *brnf_sysctl_header; static int brnf_call_iptables __read_mostly = 1; static int brnf_call_ip6tables __read_mostly = 1; static int brnf_call_arptables __read_mostly = 1; static int brnf_filter_vlan_tagged __read_mostly = 0; static int brnf_filter_pppoe_tagged __read_mostly = 0; #else #define brnf_call_iptables 1 #define brnf_call_ip6tables 1 #define brnf_call_arptables 1 #define brnf_filter_vlan_tagged 0 #define brnf_filter_pppoe_tagged 0 #endif static inline __be16 vlan_proto(const struct sk_buff *skb) { if (vlan_tx_tag_present(skb)) return skb->protocol; else if (skb->protocol == htons(ETH_P_8021Q)) return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; else return 0; } #define IS_VLAN_IP(skb) \ (vlan_proto(skb) == htons(ETH_P_IP) && \ brnf_filter_vlan_tagged) #define IS_VLAN_IPV6(skb) \ (vlan_proto(skb) == htons(ETH_P_IPV6) && \ brnf_filter_vlan_tagged) #define IS_VLAN_ARP(skb) \ (vlan_proto(skb) == htons(ETH_P_ARP) && \ brnf_filter_vlan_tagged) static inline __be16 pppoe_proto(const struct sk_buff *skb) { return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN + sizeof(struct pppoe_hdr))); } #define IS_PPPOE_IP(skb) \ (skb->protocol == htons(ETH_P_PPP_SES) && \ pppoe_proto(skb) == htons(PPP_IP) && \ brnf_filter_pppoe_tagged) #define IS_PPPOE_IPV6(skb) \ (skb->protocol == htons(ETH_P_PPP_SES) && \ pppoe_proto(skb) == htons(PPP_IPV6) && \ brnf_filter_pppoe_tagged) static void fake_update_pmtu(struct dst_entry *dst, u32 mtu) { } static u32 *fake_cow_metrics(struct dst_entry *dst, unsigned long old) { return NULL; } static struct neighbour *fake_neigh_lookup(const struct dst_entry *dst, const void *daddr) { return NULL; } static unsigned int fake_mtu(const struct dst_entry *dst) { return dst->dev->mtu; } static struct dst_ops fake_dst_ops = { .family = AF_INET, .protocol = cpu_to_be16(ETH_P_IP), .update_pmtu = fake_update_pmtu, .cow_metrics = fake_cow_metrics, .neigh_lookup = fake_neigh_lookup, .mtu = fake_mtu, }; /* * Initialize bogus route table used to keep netfilter happy. * Currently, we fill in the PMTU entry because netfilter * refragmentation needs it, and the rt_flags entry because * ipt_REJECT needs it. Future netfilter modules might * require us to fill additional fields. */ static const u32 br_dst_default_metrics[RTAX_MAX] = { [RTAX_MTU - 1] = 1500, }; void br_netfilter_rtable_init(struct net_bridge *br) { struct rtable *rt = &br->fake_rtable; atomic_set(&rt->dst.__refcnt, 1); rt->dst.dev = br->dev; rt->dst.path = &rt->dst; dst_init_metrics(&rt->dst, br_dst_default_metrics, true); rt->dst.flags = DST_NOXFRM | DST_NOPEER; rt->dst.ops = &fake_dst_ops; } static inline struct rtable *bridge_parent_rtable(const struct net_device *dev) { struct net_bridge_port *port; port = br_port_get_rcu(dev); return port ? &port->br->fake_rtable : NULL; } static inline struct net_device *bridge_parent(const struct net_device *dev) { struct net_bridge_port *port; port = br_port_get_rcu(dev); return port ? port->br->dev : NULL; } static inline struct nf_bridge_info *nf_bridge_alloc(struct sk_buff *skb) { skb->nf_bridge = kzalloc(sizeof(struct nf_bridge_info), GFP_ATOMIC); if (likely(skb->nf_bridge)) atomic_set(&(skb->nf_bridge->use), 1); return skb->nf_bridge; } static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = skb->nf_bridge; if (atomic_read(&nf_bridge->use) > 1) { struct nf_bridge_info *tmp = nf_bridge_alloc(skb); if (tmp) { memcpy(tmp, nf_bridge, sizeof(struct nf_bridge_info)); atomic_set(&tmp->use, 1); } nf_bridge_put(nf_bridge); nf_bridge = tmp; } return nf_bridge; } static inline void nf_bridge_push_encap_header(struct sk_buff *skb) { unsigned int len = nf_bridge_encap_header_len(skb); skb_push(skb, len); skb->network_header -= len; } static inline void nf_bridge_pull_encap_header(struct sk_buff *skb) { unsigned int len = nf_bridge_encap_header_len(skb); skb_pull(skb, len); skb->network_header += len; } static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb) { unsigned int len = nf_bridge_encap_header_len(skb); skb_pull_rcsum(skb, len); skb->network_header += len; } static inline void nf_bridge_save_header(struct sk_buff *skb) { int header_size = ETH_HLEN + nf_bridge_encap_header_len(skb); skb_copy_from_linear_data_offset(skb, -header_size, skb->nf_bridge->data, header_size); } static inline void nf_bridge_update_protocol(struct sk_buff *skb) { if (skb->nf_bridge->mask & BRNF_8021Q) skb->protocol = htons(ETH_P_8021Q); else if (skb->nf_bridge->mask & BRNF_PPPoE) skb->protocol = htons(ETH_P_PPP_SES); } /* When handing a packet over to the IP layer * check whether we have a skb that is in the * expected format */ static int br_parse_ip_options(struct sk_buff *skb) { struct ip_options *opt; const struct iphdr *iph; struct net_device *dev = skb->dev; u32 len; iph = ip_hdr(skb); opt = &(IPCB(skb)->opt); /* Basic sanity checks */ if (iph->ihl < 5 || iph->version != 4) goto inhdr_error; if (!pskb_may_pull(skb, iph->ihl*4)) goto inhdr_error; iph = ip_hdr(skb); if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl))) goto inhdr_error; len = ntohs(iph->tot_len); if (skb->len < len) { IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INTRUNCATEDPKTS); goto drop; } else if (len < (iph->ihl*4)) goto inhdr_error; if (pskb_trim_rcsum(skb, len)) { IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INDISCARDS); goto drop; } memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); if (iph->ihl == 5) return 0; opt->optlen = iph->ihl*4 - sizeof(struct iphdr); if (ip_options_compile(dev_net(dev), opt, skb)) goto inhdr_error; /* Check correct handling of SRR option */ if (unlikely(opt->srr)) { struct in_device *in_dev = __in_dev_get_rcu(dev); if (in_dev && !IN_DEV_SOURCE_ROUTE(in_dev)) goto drop; if (ip_options_rcv_srr(skb)) goto drop; } return 0; inhdr_error: IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_INHDRERRORS); drop: return -1; } /* Fill in the header for fragmented IP packets handled by * the IPv4 connection tracking code. */ int nf_bridge_copy_header(struct sk_buff *skb) { int err; unsigned int header_size; nf_bridge_update_protocol(skb); header_size = ETH_HLEN + nf_bridge_encap_header_len(skb); err = skb_cow_head(skb, header_size); if (err) return err; skb_copy_to_linear_data_offset(skb, -header_size, skb->nf_bridge->data, header_size); __skb_push(skb, nf_bridge_encap_header_len(skb)); return 0; } /* PF_BRIDGE/PRE_ROUTING *********************************************/ /* Undo the changes made for ip6tables PREROUTING and continue the * bridge PRE_ROUTING hook. */ static int br_nf_pre_routing_finish_ipv6(struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = skb->nf_bridge; struct rtable *rt; if (nf_bridge->mask & BRNF_PKT_TYPE) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->mask ^= BRNF_PKT_TYPE; } nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING; rt = bridge_parent_rtable(nf_bridge->physindev); if (!rt) { kfree_skb(skb); return 0; } skb_dst_set_noref(skb, &rt->dst); skb->dev = nf_bridge->physindev; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL, br_handle_frame_finish, 1); return 0; } /* Obtain the correct destination MAC address, while preserving the original * source MAC address. If we already know this address, we just copy it. If we * don't, we use the neighbour framework to find out. In both cases, we make * sure that br_handle_frame_finish() is called afterwards. */ static int br_nf_pre_routing_finish_bridge(struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = skb->nf_bridge; struct neighbour *neigh; struct dst_entry *dst; skb->dev = bridge_parent(skb->dev); if (!skb->dev) goto free_skb; dst = skb_dst(skb); neigh = dst_get_neighbour(dst); if (neigh->hh.hh_len) { neigh_hh_bridge(&neigh->hh, skb); skb->dev = nf_bridge->physindev; return br_handle_frame_finish(skb); } else { /* the neighbour function below overwrites the complete * MAC header, so we save the Ethernet source address and * protocol number. */ skb_copy_from_linear_data_offset(skb, -(ETH_HLEN-ETH_ALEN), skb->nf_bridge->data, ETH_HLEN-ETH_ALEN); /* tell br_dev_xmit to continue with forwarding */ nf_bridge->mask |= BRNF_BRIDGED_DNAT; return neigh->output(neigh, skb); } free_skb: kfree_skb(skb); return 0; } /* This requires some explaining. If DNAT has taken place, * we will need to fix up the destination Ethernet address. * * There are two cases to consider: * 1. The packet was DNAT'ed to a device in the same bridge * port group as it was received on. We can still bridge * the packet. * 2. The packet was DNAT'ed to a different device, either * a non-bridged device or another bridge port group. * The packet will need to be routed. * * The correct way of distinguishing between these two cases is to * call ip_route_input() and to look at skb->dst->dev, which is * changed to the destination device if ip_route_input() succeeds. * * Let's first consider the case that ip_route_input() succeeds: * * If the output device equals the logical bridge device the packet * came in on, we can consider this bridging. The corresponding MAC * address will be obtained in br_nf_pre_routing_finish_bridge. * Otherwise, the packet is considered to be routed and we just * change the destination MAC address so that the packet will * later be passed up to the IP stack to be routed. For a redirected * packet, ip_route_input() will give back the localhost as output device, * which differs from the bridge device. * * Let's now consider the case that ip_route_input() fails: * * This can be because the destination address is martian, in which case * the packet will be dropped. * If IP forwarding is disabled, ip_route_input() will fail, while * ip_route_output_key() can return success. The source * address for ip_route_output_key() is set to zero, so ip_route_output_key() * thinks we're handling a locally generated packet and won't care * if IP forwarding is enabled. If the output device equals the logical bridge * device, we proceed as if ip_route_input() succeeded. If it differs from the * logical bridge port or if ip_route_output_key() fails we drop the packet. */ static int br_nf_pre_routing_finish(struct sk_buff *skb) { struct net_device *dev = skb->dev; struct iphdr *iph = ip_hdr(skb); struct nf_bridge_info *nf_bridge = skb->nf_bridge; struct rtable *rt; int err; if (nf_bridge->mask & BRNF_PKT_TYPE) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->mask ^= BRNF_PKT_TYPE; } nf_bridge->mask ^= BRNF_NF_BRIDGE_PREROUTING; if (dnat_took_place(skb)) { if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) { struct in_device *in_dev = __in_dev_get_rcu(dev); /* If err equals -EHOSTUNREACH the error is due to a * martian destination or due to the fact that * forwarding is disabled. For most martian packets, * ip_route_output_key() will fail. It won't fail for 2 types of * martian destinations: loopback destinations and destination * 0.0.0.0. In both cases the packet will be dropped because the * destination is the loopback device and not the bridge. */ if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev)) goto free_skb; rt = ip_route_output(dev_net(dev), iph->daddr, 0, RT_TOS(iph->tos), 0); if (!IS_ERR(rt)) { /* - Bridged-and-DNAT'ed traffic doesn't * require ip_forwarding. */ if (rt->dst.dev == dev) { skb_dst_set(skb, &rt->dst); goto bridged_dnat; } ip_rt_put(rt); } free_skb: kfree_skb(skb); return 0; } else { if (skb_dst(skb)->dev == dev) { bridged_dnat: skb->dev = nf_bridge->physindev; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL, br_nf_pre_routing_finish_bridge, 1); return 0; } memcpy(eth_hdr(skb)->h_dest, dev->dev_addr, ETH_ALEN); skb->pkt_type = PACKET_HOST; } } else { rt = bridge_parent_rtable(nf_bridge->physindev); if (!rt) { kfree_skb(skb); return 0; } skb_dst_set_noref(skb, &rt->dst); } skb->dev = nf_bridge->physindev; nf_bridge_update_protocol(skb); nf_bridge_push_encap_header(skb); NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_PRE_ROUTING, skb, skb->dev, NULL, br_handle_frame_finish, 1); return 0; } /* Some common code for IPv4/IPv6 */ static struct net_device *setup_pre_routing(struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = skb->nf_bridge; if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->mask |= BRNF_PKT_TYPE; } nf_bridge->mask |= BRNF_NF_BRIDGE_PREROUTING; nf_bridge->physindev = skb->dev; skb->dev = bridge_parent(skb->dev); if (skb->protocol == htons(ETH_P_8021Q)) nf_bridge->mask |= BRNF_8021Q; else if (skb->protocol == htons(ETH_P_PPP_SES)) nf_bridge->mask |= BRNF_PPPoE; return skb->dev; } /* We only check the length. A bridge shouldn't do any hop-by-hop stuff anyway */ static int check_hbh_len(struct sk_buff *skb) { unsigned char *raw = (u8 *)(ipv6_hdr(skb) + 1); u32 pkt_len; const unsigned char *nh = skb_network_header(skb); int off = raw - nh; int len = (raw[1] + 1) << 3; if ((raw + len) - skb->data > skb_headlen(skb)) goto bad; off += 2; len -= 2; while (len > 0) { int optlen = nh[off + 1] + 2; switch (nh[off]) { case IPV6_TLV_PAD0: optlen = 1; break; case IPV6_TLV_PADN: break; case IPV6_TLV_JUMBO: if (nh[off + 1] != 4 || (off & 3) != 2) goto bad; pkt_len = ntohl(*(__be32 *) (nh + off + 2)); if (pkt_len <= IPV6_MAXPLEN || ipv6_hdr(skb)->payload_len) goto bad; if (pkt_len > skb->len - sizeof(struct ipv6hdr)) goto bad; if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr))) goto bad; nh = skb_network_header(skb); break; default: if (optlen > len) goto bad; break; } off += optlen; len -= optlen; } if (len == 0) return 0; bad: return -1; } /* Replicate the checks that IPv6 does on packet reception and pass the packet * to ip6tables, which doesn't support NAT, so things are fairly simple. */ static unsigned int br_nf_pre_routing_ipv6(unsigned int hook, struct sk_buff *skb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { const struct ipv6hdr *hdr; u32 pkt_len; if (skb->len < sizeof(struct ipv6hdr)) return NF_DROP; if (!pskb_may_pull(skb, sizeof(struct ipv6hdr))) return NF_DROP; hdr = ipv6_hdr(skb); if (hdr->version != 6) return NF_DROP; pkt_len = ntohs(hdr->payload_len); if (pkt_len || hdr->nexthdr != NEXTHDR_HOP) { if (pkt_len + sizeof(struct ipv6hdr) > skb->len) return NF_DROP; if (pskb_trim_rcsum(skb, pkt_len + sizeof(struct ipv6hdr))) return NF_DROP; } if (hdr->nexthdr == NEXTHDR_HOP && check_hbh_len(skb)) return NF_DROP; nf_bridge_put(skb->nf_bridge); if (!nf_bridge_alloc(skb)) return NF_DROP; if (!setup_pre_routing(skb)) return NF_DROP; skb->protocol = htons(ETH_P_IPV6); NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, skb->dev, NULL, br_nf_pre_routing_finish_ipv6); return NF_STOLEN; } /* Direct IPv6 traffic to br_nf_pre_routing_ipv6. * Replicate the checks that IPv4 does on packet reception. * Set skb->dev to the bridge device (i.e. parent of the * receiving device) to make netfilter happy, the REDIRECT * target in particular. Save the original destination IP * address to be able to detect DNAT afterwards. */ static unsigned int br_nf_pre_routing(unsigned int hook, struct sk_buff *skb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { struct net_bridge_port *p; struct net_bridge *br; __u32 len = nf_bridge_encap_header_len(skb); if (unlikely(!pskb_may_pull(skb, len))) return NF_DROP; p = br_port_get_rcu(in); if (p == NULL) return NF_DROP; br = p->br; if (skb->protocol == htons(ETH_P_IPV6) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) { if (!brnf_call_ip6tables && !br->nf_call_ip6tables) return NF_ACCEPT; nf_bridge_pull_encap_header_rcsum(skb); return br_nf_pre_routing_ipv6(hook, skb, in, out, okfn); } if (!brnf_call_iptables && !br->nf_call_iptables) return NF_ACCEPT; if (skb->protocol != htons(ETH_P_IP) && !IS_VLAN_IP(skb) && !IS_PPPOE_IP(skb)) return NF_ACCEPT; nf_bridge_pull_encap_header_rcsum(skb); if (br_parse_ip_options(skb)) return NF_DROP; nf_bridge_put(skb->nf_bridge); if (!nf_bridge_alloc(skb)) return NF_DROP; if (!setup_pre_routing(skb)) return NF_DROP; store_orig_dstaddr(skb); skb->protocol = htons(ETH_P_IP); NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, skb->dev, NULL, br_nf_pre_routing_finish); return NF_STOLEN; } /* PF_BRIDGE/LOCAL_IN ************************************************/ /* The packet is locally destined, which requires a real * dst_entry, so detach the fake one. On the way up, the * packet would pass through PRE_ROUTING again (which already * took place when the packet entered the bridge), but we * register an IPv4 PRE_ROUTING 'sabotage' hook that will * prevent this from happening. */ static unsigned int br_nf_local_in(unsigned int hook, struct sk_buff *skb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { struct rtable *rt = skb_rtable(skb); if (rt && rt == bridge_parent_rtable(in)) skb_dst_drop(skb); return NF_ACCEPT; } /* PF_BRIDGE/FORWARD *************************************************/ static int br_nf_forward_finish(struct sk_buff *skb) { struct nf_bridge_info *nf_bridge = skb->nf_bridge; struct net_device *in; if (skb->protocol != htons(ETH_P_ARP) && !IS_VLAN_ARP(skb)) { in = nf_bridge->physindev; if (nf_bridge->mask & BRNF_PKT_TYPE) { skb->pkt_type = PACKET_OTHERHOST; nf_bridge->mask ^= BRNF_PKT_TYPE; } nf_bridge_update_protocol(skb); } else { in = *((struct net_device **)(skb->cb)); } nf_bridge_push_encap_header(skb); NF_HOOK_THRESH(NFPROTO_BRIDGE, NF_BR_FORWARD, skb, in, skb->dev, br_forward_finish, 1); return 0; } /* This is the 'purely bridged' case. For IP, we pass the packet to * netfilter with indev and outdev set to the bridge device, * but we are still able to filter on the 'real' indev/outdev * because of the physdev module. For ARP, indev and outdev are the * bridge ports. */ static unsigned int br_nf_forward_ip(unsigned int hook, struct sk_buff *skb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { struct nf_bridge_info *nf_bridge; struct net_device *parent; u_int8_t pf; if (!skb->nf_bridge) return NF_ACCEPT; /* Need exclusive nf_bridge_info since we might have multiple * different physoutdevs. */ if (!nf_bridge_unshare(skb)) return NF_DROP; parent = bridge_parent(out); if (!parent) return NF_DROP; if (skb->protocol == htons(ETH_P_IP) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb)) pf = PF_INET; else if (skb->protocol == htons(ETH_P_IPV6) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) pf = PF_INET6; else return NF_ACCEPT; nf_bridge_pull_encap_header(skb); nf_bridge = skb->nf_bridge; if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->mask |= BRNF_PKT_TYPE; } if (pf == PF_INET && br_parse_ip_options(skb)) return NF_DROP; /* The physdev module checks on this */ nf_bridge->mask |= BRNF_BRIDGED; nf_bridge->physoutdev = skb->dev; if (pf == PF_INET) skb->protocol = htons(ETH_P_IP); else skb->protocol = htons(ETH_P_IPV6); NF_HOOK(pf, NF_INET_FORWARD, skb, bridge_parent(in), parent, br_nf_forward_finish); return NF_STOLEN; } static unsigned int br_nf_forward_arp(unsigned int hook, struct sk_buff *skb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { struct net_bridge_port *p; struct net_bridge *br; struct net_device **d = (struct net_device **)(skb->cb); p = br_port_get_rcu(out); if (p == NULL) return NF_ACCEPT; br = p->br; if (!brnf_call_arptables && !br->nf_call_arptables) return NF_ACCEPT; if (skb->protocol != htons(ETH_P_ARP)) { if (!IS_VLAN_ARP(skb)) return NF_ACCEPT; nf_bridge_pull_encap_header(skb); } if (arp_hdr(skb)->ar_pln != 4) { if (IS_VLAN_ARP(skb)) nf_bridge_push_encap_header(skb); return NF_ACCEPT; } *d = (struct net_device *)in; NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, skb, (struct net_device *)in, (struct net_device *)out, br_nf_forward_finish); return NF_STOLEN; } #if defined(CONFIG_NF_CONNTRACK_IPV4) || defined(CONFIG_NF_CONNTRACK_IPV4_MODULE) static int br_nf_dev_queue_xmit(struct sk_buff *skb) { int ret; if (skb->nfct != NULL && skb->protocol == htons(ETH_P_IP) && skb->len + nf_bridge_mtu_reduction(skb) > skb->dev->mtu && !skb_is_gso(skb)) { if (br_parse_ip_options(skb)) /* Drop invalid packet */ return NF_DROP; ret = ip_fragment(skb, br_dev_queue_push_xmit); } else ret = br_dev_queue_push_xmit(skb); return ret; } #else static int br_nf_dev_queue_xmit(struct sk_buff *skb) { return br_dev_queue_push_xmit(skb); } #endif /* PF_BRIDGE/POST_ROUTING ********************************************/ static unsigned int br_nf_post_routing(unsigned int hook, struct sk_buff *skb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { struct nf_bridge_info *nf_bridge = skb->nf_bridge; struct net_device *realoutdev = bridge_parent(skb->dev); u_int8_t pf; if (!nf_bridge || !(nf_bridge->mask & BRNF_BRIDGED)) return NF_ACCEPT; if (!realoutdev) return NF_DROP; if (skb->protocol == htons(ETH_P_IP) || IS_VLAN_IP(skb) || IS_PPPOE_IP(skb)) pf = PF_INET; else if (skb->protocol == htons(ETH_P_IPV6) || IS_VLAN_IPV6(skb) || IS_PPPOE_IPV6(skb)) pf = PF_INET6; else return NF_ACCEPT; /* We assume any code from br_dev_queue_push_xmit onwards doesn't care * about the value of skb->pkt_type. */ if (skb->pkt_type == PACKET_OTHERHOST) { skb->pkt_type = PACKET_HOST; nf_bridge->mask |= BRNF_PKT_TYPE; } nf_bridge_pull_encap_header(skb); nf_bridge_save_header(skb); if (pf == PF_INET) skb->protocol = htons(ETH_P_IP); else skb->protocol = htons(ETH_P_IPV6); NF_HOOK(pf, NF_INET_POST_ROUTING, skb, NULL, realoutdev, br_nf_dev_queue_xmit); return NF_STOLEN; } /* IP/SABOTAGE *****************************************************/ /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING * for the second time. */ static unsigned int ip_sabotage_in(unsigned int hook, struct sk_buff *skb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { if (skb->nf_bridge && !(skb->nf_bridge->mask & BRNF_NF_BRIDGE_PREROUTING)) { return NF_STOP; } return NF_ACCEPT; } /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because * br_dev_queue_push_xmit is called afterwards */ static struct nf_hook_ops br_nf_ops[] __read_mostly = { { .hook = br_nf_pre_routing, .owner = THIS_MODULE, .pf = PF_BRIDGE, .hooknum = NF_BR_PRE_ROUTING, .priority = NF_BR_PRI_BRNF, }, { .hook = br_nf_local_in, .owner = THIS_MODULE, .pf = PF_BRIDGE, .hooknum = NF_BR_LOCAL_IN, .priority = NF_BR_PRI_BRNF, }, { .hook = br_nf_forward_ip, .owner = THIS_MODULE, .pf = PF_BRIDGE, .hooknum = NF_BR_FORWARD, .priority = NF_BR_PRI_BRNF - 1, }, { .hook = br_nf_forward_arp, .owner = THIS_MODULE, .pf = PF_BRIDGE, .hooknum = NF_BR_FORWARD, .priority = NF_BR_PRI_BRNF, }, { .hook = br_nf_post_routing, .owner = THIS_MODULE, .pf = PF_BRIDGE, .hooknum = NF_BR_POST_ROUTING, .priority = NF_BR_PRI_LAST, }, { .hook = ip_sabotage_in, .owner = THIS_MODULE, .pf = PF_INET, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP_PRI_FIRST, }, { .hook = ip_sabotage_in, .owner = THIS_MODULE, .pf = PF_INET6, .hooknum = NF_INET_PRE_ROUTING, .priority = NF_IP6_PRI_FIRST, }, }; #ifdef CONFIG_SYSCTL static int brnf_sysctl_call_tables(ctl_table * ctl, int write, void __user * buffer, size_t * lenp, loff_t * ppos) { int ret; ret = proc_dointvec(ctl, write, buffer, lenp, ppos); if (write && *(int *)(ctl->data)) *(int *)(ctl->data) = 1; return ret; } static ctl_table brnf_table[] = { { .procname = "bridge-nf-call-arptables", .data = &brnf_call_arptables, .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-call-iptables", .data = &brnf_call_iptables, .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-call-ip6tables", .data = &brnf_call_ip6tables, .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-filter-vlan-tagged", .data = &brnf_filter_vlan_tagged, .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { .procname = "bridge-nf-filter-pppoe-tagged", .data = &brnf_filter_pppoe_tagged, .maxlen = sizeof(int), .mode = 0644, .proc_handler = brnf_sysctl_call_tables, }, { } }; static struct ctl_path brnf_path[] = { { .procname = "net", }, { .procname = "bridge", }, { } }; #endif int __init br_netfilter_init(void) { int ret; ret = dst_entries_init(&fake_dst_ops); if (ret < 0) return ret; ret = nf_register_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops)); if (ret < 0) { dst_entries_destroy(&fake_dst_ops); return ret; } #ifdef CONFIG_SYSCTL brnf_sysctl_header = register_sysctl_paths(brnf_path, brnf_table); if (brnf_sysctl_header == NULL) { printk(KERN_WARNING "br_netfilter: can't register to sysctl.\n"); nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops)); dst_entries_destroy(&fake_dst_ops); return -ENOMEM; } #endif printk(KERN_NOTICE "Bridge firewalling registered\n"); return 0; } void br_netfilter_fini(void) { nf_unregister_hooks(br_nf_ops, ARRAY_SIZE(br_nf_ops)); #ifdef CONFIG_SYSCTL unregister_sysctl_table(brnf_sysctl_header); #endif dst_entries_destroy(&fake_dst_ops); }