#ifndef TASK_FINDER_VMA_C #define TASK_FINDER_VMA_C #include #include #include #include #include // __stp_tf_vma_lock protects the hash table. // Documentation/spinlocks.txt suggest we can be a bit more clever // if we guarantee that in interrupt context we only read, not write // the datastructures. We should never change the hash table or the // contents in interrupt context (which should only ever call // stap_find_vma_map_info for getting stored vma info). So we might // want to look into that if this seems a bottleneck. static DEFINE_RWLOCK(__stp_tf_vma_lock); #define __STP_TF_HASH_BITS 4 #define __STP_TF_TABLE_SIZE (1 << __STP_TF_HASH_BITS) #ifndef TASK_FINDER_VMA_ENTRY_PATHLEN #define TASK_FINDER_VMA_ENTRY_PATHLEN 64 #elif TASK_FINDER_VMA_ENTRY_PATHLEN < 8 #error "gimme a little more TASK_FINDER_VMA_ENTRY_PATHLEN" #endif struct __stp_tf_vma_entry { struct hlist_node hlist; pid_t pid; unsigned long vm_start; unsigned long vm_end; char path[TASK_FINDER_VMA_ENTRY_PATHLEN]; /* mmpath name, if known */ // User data (possibly stp_module) void *user; }; static struct hlist_head *__stp_tf_vma_map; // __stp_tf_vma_new_entry(): Returns an newly allocated or NULL. // Must only be called from user context. // ... except, with inode-uprobes / task-finder2, it can be called from // random tracepoints. So we cannot sleep after all. static struct __stp_tf_vma_entry * __stp_tf_vma_new_entry(void) { struct __stp_tf_vma_entry *entry; size_t size = sizeof (struct __stp_tf_vma_entry); #ifdef CONFIG_UTRACE entry = (struct __stp_tf_vma_entry *) _stp_kmalloc_gfp(size, STP_ALLOC_SLEEP_FLAGS); #else entry = (struct __stp_tf_vma_entry *) _stp_kmalloc_gfp(size, STP_ALLOC_FLAGS); #endif return entry; } // __stp_tf_vma_release_entry(): Frees an entry. static void __stp_tf_vma_release_entry(struct __stp_tf_vma_entry *entry) { _stp_kfree (entry); } // stap_initialize_vma_map(): Initialize the free list. Grabs the // spinlock. Should be called before any of the other stap_*_vma_map // functions. Since this is run before any other function is called, // this doesn't need any locking. Should be called from a user context // since it can allocate memory. static int stap_initialize_vma_map(void) { size_t size = sizeof(struct hlist_head) * __STP_TF_TABLE_SIZE; struct hlist_head *map = (struct hlist_head *) _stp_kzalloc_gfp(size, STP_ALLOC_SLEEP_FLAGS); if (map == NULL) return -ENOMEM; __stp_tf_vma_map = map; return 0; } // stap_destroy_vma_map(): Unconditionally destroys vma entries. // Nothing should be using it anymore. Doesn't lock anything and just // frees all items. static void stap_destroy_vma_map(void) { if (__stp_tf_vma_map != NULL) { int i; for (i = 0; i < __STP_TF_TABLE_SIZE; i++) { struct hlist_head *head = &__stp_tf_vma_map[i]; struct hlist_node *node; struct hlist_node *n; struct __stp_tf_vma_entry *entry = NULL; if (hlist_empty(head)) continue; stap_hlist_for_each_entry_safe(entry, node, n, head, hlist) { hlist_del(&entry->hlist); __stp_tf_vma_release_entry(entry); } } _stp_kfree(__stp_tf_vma_map); } } // __stp_tf_vma_map_hash(): Compute the vma map hash. static inline u32 __stp_tf_vma_map_hash(struct task_struct *tsk) { return (jhash_1word(tsk->pid, 0) & (__STP_TF_TABLE_SIZE - 1)); } // Get vma_entry if the vma is present in the vma map hash table. // Returns NULL if not present. The __stp_tf_vma_lock must be read locked // before calling this function. static struct __stp_tf_vma_entry * __stp_tf_get_vma_map_entry_internal(struct task_struct *tsk, unsigned long vm_start) { struct hlist_head *head; struct hlist_node *node; struct __stp_tf_vma_entry *entry; head = &__stp_tf_vma_map[__stp_tf_vma_map_hash(tsk)]; stap_hlist_for_each_entry(entry, node, head, hlist) { if (tsk->pid == entry->pid && vm_start == entry->vm_start) { return entry; } } return NULL; } // Get vma_entry if the vma with the given vm_end is present in the vma map // hash table for the tsk. Returns NULL if not present. // The __stp_tf_vma_lock must be read locked before calling this function. static struct __stp_tf_vma_entry * __stp_tf_get_vma_map_entry_end_internal(struct task_struct *tsk, unsigned long vm_end) { struct hlist_head *head; struct hlist_node *node; struct __stp_tf_vma_entry *entry; head = &__stp_tf_vma_map[__stp_tf_vma_map_hash(tsk)]; stap_hlist_for_each_entry(entry, node, head, hlist) { if (tsk->pid == entry->pid && vm_end == entry->vm_end) { return entry; } } return NULL; } // Add the vma info to the vma map hash table. // Caller is responsible for name lifetime. // Can allocate memory, so needs to be called // only from user context. static int stap_add_vma_map_info(struct task_struct *tsk, unsigned long vm_start, unsigned long vm_end, const char *path, void *user) { struct hlist_head *head; struct hlist_node *node; struct __stp_tf_vma_entry *entry; struct __stp_tf_vma_entry *new_entry; unsigned long flags; // Take a write lock, since we are most likely going to write // after reading. But reserve a new entry first outside the lock. new_entry = __stp_tf_vma_new_entry(); write_lock_irqsave(&__stp_tf_vma_lock, flags); entry = __stp_tf_get_vma_map_entry_internal(tsk, vm_start); if (entry != NULL) { write_unlock_irqrestore(&__stp_tf_vma_lock, flags); if (new_entry) __stp_tf_vma_release_entry(new_entry); return -EBUSY; /* Already there */ } if (!new_entry) { write_unlock_irqrestore(&__stp_tf_vma_lock, flags); return -ENOMEM; } // Fill in the info entry = new_entry; entry->pid = tsk->pid; entry->vm_start = vm_start; entry->vm_end = vm_end; if (strlen(path) >= TASK_FINDER_VMA_ENTRY_PATHLEN-3) { strncpy (entry->path, "...", TASK_FINDER_VMA_ENTRY_PATHLEN); strlcpy (entry->path+3, &path[strlen(path)-TASK_FINDER_VMA_ENTRY_PATHLEN+4], TASK_FINDER_VMA_ENTRY_PATHLEN-3); } else { strlcpy (entry->path, path, TASK_FINDER_VMA_ENTRY_PATHLEN); } entry->user = user; head = &__stp_tf_vma_map[__stp_tf_vma_map_hash(tsk)]; hlist_add_head(&entry->hlist, head); write_unlock_irqrestore(&__stp_tf_vma_lock, flags); return 0; } // Extend the vma info vm_end in the vma map hash table if there is already // a vma_info which ends precisely where this new one starts for the given // task. Returns zero on success, -ESRCH if no existing matching entry could // be found. static int stap_extend_vma_map_info(struct task_struct *tsk, unsigned long vm_start, unsigned long vm_end) { struct hlist_head *head; struct hlist_node *node; struct __stp_tf_vma_entry *entry; unsigned long flags; int res = -ESRCH; // Entry not there or doesn't match. // Take a write lock, since we are most likely going to write // to the entry after reading, if its vm_end matches our vm_start. write_lock_irqsave(&__stp_tf_vma_lock, flags); entry = __stp_tf_get_vma_map_entry_end_internal(tsk, vm_start); if (entry != NULL) { entry->vm_end = vm_end; res = 0; } write_unlock_irqrestore(&__stp_tf_vma_lock, flags); return res; } // Remove the vma entry from the vma hash table. // Returns -ESRCH if the entry isn't present. static int stap_remove_vma_map_info(struct task_struct *tsk, unsigned long vm_start) { struct hlist_head *head; struct hlist_node *node; struct __stp_tf_vma_entry *entry; int rc = -ESRCH; // Take a write lock since we are most likely going to delete // after reading. unsigned long flags; write_lock_irqsave(&__stp_tf_vma_lock, flags); entry = __stp_tf_get_vma_map_entry_internal(tsk, vm_start); if (entry != NULL) { hlist_del(&entry->hlist); __stp_tf_vma_release_entry(entry); rc = 0; } write_unlock_irqrestore(&__stp_tf_vma_lock, flags); return rc; } // Finds vma info if the vma is present in the vma map hash table for // a given task and address (between vm_start and vm_end). // Returns -ESRCH if not present. The __stp_tf_vma_lock must *not* be // locked before calling this function. static int stap_find_vma_map_info(struct task_struct *tsk, unsigned long addr, unsigned long *vm_start, unsigned long *vm_end, const char **path, void **user) { struct hlist_head *head; struct hlist_node *node; struct __stp_tf_vma_entry *entry; struct __stp_tf_vma_entry *found_entry = NULL; int rc = -ESRCH; unsigned long flags; if (__stp_tf_vma_map == NULL) return rc; read_lock_irqsave(&__stp_tf_vma_lock, flags); head = &__stp_tf_vma_map[__stp_tf_vma_map_hash(tsk)]; stap_hlist_for_each_entry(entry, node, head, hlist) { if (tsk->pid == entry->pid && addr >= entry->vm_start && addr < entry->vm_end) { found_entry = entry; break; } } if (found_entry != NULL) { if (vm_start != NULL) *vm_start = found_entry->vm_start; if (vm_end != NULL) *vm_end = found_entry->vm_end; if (path != NULL) *path = found_entry->path; if (user != NULL) *user = found_entry->user; rc = 0; } read_unlock_irqrestore(&__stp_tf_vma_lock, flags); return rc; } // Finds vma info if the vma is present in the vma map hash table for // a given task with the given user handle. // Returns -ESRCH if not present. The __stp_tf_vma_lock must *not* be // locked before calling this function. static int stap_find_vma_map_info_user(struct task_struct *tsk, void *user, unsigned long *vm_start, unsigned long *vm_end, const char **path) { struct hlist_head *head; struct hlist_node *node; struct __stp_tf_vma_entry *entry; struct __stp_tf_vma_entry *found_entry = NULL; int rc = -ESRCH; unsigned long flags; if (__stp_tf_vma_map == NULL) return rc; read_lock_irqsave(&__stp_tf_vma_lock, flags); head = &__stp_tf_vma_map[__stp_tf_vma_map_hash(tsk)]; stap_hlist_for_each_entry(entry, node, head, hlist) { if (tsk->pid == entry->pid && user == entry->user) { found_entry = entry; break; } } if (found_entry != NULL) { if (vm_start != NULL) *vm_start = found_entry->vm_start; if (vm_end != NULL) *vm_end = found_entry->vm_end; if (path != NULL) *path = found_entry->path; rc = 0; } read_unlock_irqrestore(&__stp_tf_vma_lock, flags); return rc; } static int stap_drop_vma_maps(struct task_struct *tsk) { struct hlist_head *head; struct hlist_node *node; struct hlist_node *n; struct __stp_tf_vma_entry *entry; unsigned long flags; write_lock_irqsave(&__stp_tf_vma_lock, flags); head = &__stp_tf_vma_map[__stp_tf_vma_map_hash(tsk)]; stap_hlist_for_each_entry_safe(entry, node, n, head, hlist) { if (tsk->pid == entry->pid) { hlist_del(&entry->hlist); __stp_tf_vma_release_entry(entry); } } write_unlock_irqrestore(&__stp_tf_vma_lock, flags); return 0; } /* Find the main executable for this mm. * NB: mmap_sem should be held already. */ static struct file* stap_find_exe_file(struct mm_struct* mm) { /* VM_EXECUTABLE was killed in kernel commit e9714acf, but in kernels * that new we can just use mm->exe_file anyway. (PR14712) */ #ifdef VM_EXECUTABLE struct vm_area_struct *vma; for (vma = mm->mmap; vma; vma = vma->vm_next) if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file) return vma->vm_file; return NULL; #else return mm->exe_file; #endif } #endif /* TASK_FINDER_VMA_C */