/* * Userspace Probes (UProbes) * uprobes.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * Copyright (C) 2011 Mentor Graphics Corporation * * Instruction validation and emulation code is based on * ARM kprobes which is * Copyright (C) 2011 Jon Medhurst . * Copyright (C) 2006, 2007 Motorola Inc. */ /* * In versions of uprobes built in the SystemTap runtime, this file * is #included at the end of uprobes.c. */ /* * We do not have hardware single-stepping on ARM, This * effort is further complicated by the ARM not having a * "next PC" register. Instructions that change the PC * can't be safely single-stepped in a MP environment, so * we have a lot of work to do: * * In the prepare phase: * *) If it is an instruction that does anything * with the CPU mode, we reject it for a uprobe. * (This is out of laziness rather than need. The * instructions could be simulated.) * * *) Otherwise, decode the instruction rewriting its * registers to take fixed, ordered registers and * setting a handler for it to run the instruction. * * In the execution phase by an instruction's handler: * * *) If the PC is written to by the instruction, the * instruction must be fully simulated in software. * * *) Otherwise, a modified form of the instruction is * directly executed. Its handler calls the * instruction in insn[0]. In insn[1] is a * "mov pc, lr" to return. * * Before calling, load up the reordered registers * from the original instruction's registers. If one * of the original input registers is the PC, compute * and adjust the appropriate input register. * * After call completes, copy the output registers to * the original instruction's original registers. * * We don't use a real breakpoint instruction since that * would have us in the kernel go from SVC mode to SVC * mode losing the link register. Instead we use an * undefined instruction. To simplify processing, the * undefined instruction used for uprobes must be reserved * exclusively for uprobes use. * * TODO: ifdef out some instruction decoding based on architecture. */ #define APSR_MASK 0xf80f0000 /* N, Z, C, V, Q and GE flags */ int cpu_architecture(void) { int cpu_arch; if ((read_cpuid_id() & 0x0008f000) == 0) { cpu_arch = CPU_ARCH_UNKNOWN; } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { cpu_arch = (read_cpuid_id() >> 16) & 7; if (cpu_arch) cpu_arch += CPU_ARCH_ARMv3; } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { unsigned int mmfr0; /* Revised CPUID format. Read the Memory Model Feature * Register 0 and check for VMSAv7 or PMSAv7 */ asm("mrc p15, 0, %0, c0, c1, 4" : "=r" (mmfr0)); if ((mmfr0 & 0x0000000f) >= 0x00000003 || (mmfr0 & 0x000000f0) >= 0x00000030) cpu_arch = CPU_ARCH_ARMv7; else if ((mmfr0 & 0x0000000f) == 0x00000002 || (mmfr0 & 0x000000f0) == 0x00000020) cpu_arch = CPU_ARCH_ARMv6; else cpu_arch = CPU_ARCH_UNKNOWN; } else cpu_arch = CPU_ARCH_UNKNOWN; return cpu_arch; } #if __LINUX_ARM_ARCH__ >= 7 /* str_pc_offset is architecturally defined from ARMv7 onwards */ #define str_pc_offset 8 #define find_str_pc_offset() #else /* __LINUX_ARM_ARCH__ < 7 */ /* We need a run-time check to determine str_pc_offset */ extern int str_pc_offset; void find_str_pc_offset(void); #endif static inline void bx_write_pc(long pcv, struct pt_regs *regs) { long cpsr = regs->ARM_cpsr; if (pcv & 0x1) { cpsr |= PSR_T_BIT; pcv &= ~0x1; } else { cpsr &= ~PSR_T_BIT; pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */ } regs->ARM_cpsr = cpsr; regs->ARM_pc = pcv; } #if __LINUX_ARM_ARCH__ >= 6 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */ #define load_write_pc_interworks true #define test_load_write_pc_interworking() #else /* __LINUX_ARM_ARCH__ < 6 */ /* We need run-time testing to determine if load_write_pc() should interwork. * */ extern bool load_write_pc_interworks; void test_load_write_pc_interworking(void); #endif static inline void load_write_pc(long pcv, struct pt_regs *regs) { if (load_write_pc_interworks) bx_write_pc(pcv, regs); else regs->ARM_pc = pcv; } #if __LINUX_ARM_ARCH__ >= 7 #define alu_write_pc_interworks true #define test_alu_write_pc_interworking() #elif __LINUX_ARM_ARCH__ <= 5 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */ #define alu_write_pc_interworks false #define test_alu_write_pc_interworking() #else /* __LINUX_ARM_ARCH__ == 6 */ /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. * */ extern bool alu_write_pc_interworks; void test_alu_write_pc_interworking(void); #endif /* __LINUX_ARM_ARCH__ == 6 */ static inline void alu_write_pc(long pcv, struct pt_regs *regs) { if (alu_write_pc_interworks) bx_write_pc(pcv, regs); else regs->ARM_pc = pcv; } enum uprobe_insn { INSN_REJECTED, INSN_GOOD, INSN_GOOD_NO_SLOT }; typedef enum uprobe_insn (uprobe_decode_insn_t)(uprobe_opcode_t, struct uprobe_probept_arch_info *); /* * Test if load/store instructions writeback the address register. * if P (bit 24) == 0 or W (bit 21) == 1 */ #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000) /* * The following definitions and macros are used to build instruction * decoding tables for use by uprobe_decode_insn. * * These tables are a concatenation of entries each of which consist of one of * the decode_* structs. All of the fields in every type of decode structure * are of the union type decode_item, therefore the entire decode table can be * viewed as an array of these and declared like: * * static const union decode_item table_name[] = {}; * * In order to construct each entry in the table, macros are used to * initialise a number of sequential decode_item values in a layout which * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct * decode_simulate by initialising four decode_item objects like this... * * {.bits = _type}, * {.bits = _mask}, * {.bits = _value}, * {.handler = _handler}, * * Initialising a specified member of the union means that the compiler * will produce a warning if the argument is of an incorrect type. * * Below is a list of each of the macros used to initialise entries and a * description of the action performed when that entry is matched to an * instruction. A match is found when (instruction & mask) == value. * * DECODE_TABLE(mask, value, table) * Instruction decoding jumps to parsing the new sub-table 'table'. * * DECODE_CUSTOM(mask, value, decoder) * The custom function 'decoder' is called to the complete decoding * of an instruction. * * DECODE_SIMULATE(mask, value, handler) * Set the probes instruction handler to 'handler', this will be used * to simulate the instruction when the probe is hit. Decoding returns * with INSN_GOOD_NO_SLOT. * * DECODE_EMULATE(mask, value, handler) * Set the probes instruction handler to 'handler', this will be used * to emulate the instruction when the probe is hit. The modified * instruction (see below) is placed in the probes instruction slot so it * may be called by the emulation code. Decoding returns with INSN_GOOD. * * DECODE_REJECT(mask, value) * Instruction decoding fails with INSN_REJECTED * * DECODE_OR(mask, value) * This allows the mask/value test of multiple table entries to be * logically ORed. Once an 'or' entry is matched the decoding action to * be performed is that of the next entry which isn't an 'or'. E.g. * * DECODE_OR (mask1, value1) * DECODE_OR (mask2, value2) * DECODE_SIMULATE (mask3, value3, simulation_handler) * * This means that if any of the three mask/value pairs match the * instruction being decoded, then 'simulation_handler' will be used * for it. * * Both the SIMULATE and EMULATE macros have a second form which take an * additional 'regs' argument. * * DECODE_SIMULATEX(mask, value, handler, regs) * DECODE_EMULATEX (mask, value, handler, regs) * * These are used to specify what kind of CPU register is encoded in each of the * least significant 5 nibbles of the instruction being decoded. The regs value * is specified using the REGS macro, this takes any of the REG_TYPE_* values * from enum decode_reg_type as arguments; only the '*' part of the name is * given. E.g. * * REGS(0, ANY, NOPC, 0, ANY) * * This indicates an instruction is encoded like: * * bits 19..16 ignore * bits 15..12 any register allowed here * bits 11.. 8 any register except PC allowed here * bits 7.. 4 ignore * bits 3.. 0 any register allowed here * * This register specification is checked after a decode table entry is found to * match an instruction (through the mask/value test). Any invalid register then * found in the instruction will cause decoding to fail with INSN_REJECTED. In * the above example this would happen if bits 11..8 of the instruction were * 1111, indicating R15 or PC. * * As well as checking for legal combinations of registers, this data is also * used to modify the registers encoded in the instructions so that an * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) * * Here is a real example which matches ARM instructions of the form * "AND ,,, " * * DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags, * REGS(ANY, ANY, NOPC, 0, ANY)), * ^ ^ ^ ^ * Rn Rd Rs Rm * * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because * Rs == R15 * * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into * the uprobes instruction slot. This can then be called later by the handler * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction. */ enum decode_type { DECODE_TYPE_END, DECODE_TYPE_TABLE, DECODE_TYPE_CUSTOM, DECODE_TYPE_SIMULATE, DECODE_TYPE_EMULATE, DECODE_TYPE_OR, DECODE_TYPE_REJECT, NUM_DECODE_TYPES /* Must be last enum */ }; #define DECODE_TYPE_BITS 4 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1) enum decode_reg_type { REG_TYPE_NONE = 0, /* Not a register, ignore */ REG_TYPE_ANY, /* Any register allowed */ REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */ REG_TYPE_SP, /* Register must be SP */ REG_TYPE_PC, /* Register must be PC */ REG_TYPE_NOSP, /* Register must not be SP */ REG_TYPE_NOSPPC, /* Register must not be SP or PC */ REG_TYPE_NOPC, /* Register must not be PC */ REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */ /* The following types are used when the encoding for PC indicates * another instruction form. This distiction only matters for test * case coverage checks. */ REG_TYPE_NOPCX, /* Register must not be PC */ REG_TYPE_NOSPPCX, /* Register must not be SP or PC */ /* Alias to allow '0' arg to be used in REGS macro. */ REG_TYPE_0 = REG_TYPE_NONE }; #define REGS(r16, r12, r8, r4, r0) \ ((REG_TYPE_##r16) << 16) + \ ((REG_TYPE_##r12) << 12) + \ ((REG_TYPE_##r8) << 8) + \ ((REG_TYPE_##r4) << 4) + \ (REG_TYPE_##r0) union decode_item { u32 bits; const union decode_item *table; uprobe_insn_handler_t *handler; uprobe_decode_insn_t *decoder; }; #define DECODE_END \ {.bits = DECODE_TYPE_END} struct decode_header { union decode_item type_regs; union decode_item mask; union decode_item value; }; #define DECODE_HEADER(_type, _mask, _value, _regs) \ {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \ {.bits = (_mask)}, \ {.bits = (_value)} struct decode_table { struct decode_header header; union decode_item table; }; #define DECODE_TABLE(_mask, _value, _table) \ DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \ {.table = (_table)} struct decode_custom { struct decode_header header; union decode_item decoder; }; #define DECODE_CUSTOM(_mask, _value, _decoder) \ DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \ {.decoder = (_decoder)} struct decode_simulate { struct decode_header header; union decode_item handler; }; #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \ DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \ {.handler = (_handler)} #define DECODE_SIMULATE(_mask, _value, _handler) \ DECODE_SIMULATEX(_mask, _value, _handler, 0) struct decode_emulate { struct decode_header header; union decode_item handler; }; #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \ DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \ {.handler = (_handler)} #define DECODE_EMULATE(_mask, _value, _handler) \ DECODE_EMULATEX(_mask, _value, _handler, 0) struct decode_or { struct decode_header header; }; #define DECODE_OR(_mask, _value) \ DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0) struct decode_reject { struct decode_header header; }; #define DECODE_REJECT(_mask, _value) \ DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0) #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit))))) #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25) #if __LINUX_ARM_ARCH__ >= 6 #define BLX(reg) "blx "reg" \n\t" #else #define BLX(reg) "mov lr, pc \n\t" \ "mov pc, "reg" \n\t" #endif #ifndef find_str_pc_offset /* * For STR and STM instructions, an ARM core may choose to use either * a +8 or a +12 displacement from the current instruction's address. * Whichever value is chosen for a given core, it must be the same for * both instructions and may not change. This function measures it. */ int str_pc_offset; void find_str_pc_offset(void) { int addr, scratch, ret; __asm__ ( "sub %[ret], pc, #4 \n\t" "str pc, %[addr] \n\t" "ldr %[scr], %[addr] \n\t" "sub %[ret], %[scr], %[ret] \n\t" : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr)); str_pc_offset = ret; } #endif /* !find_str_pc_offset */ #ifndef test_load_write_pc_interworking bool load_write_pc_interworks; void test_load_write_pc_interworking(void) { int arch = cpu_architecture(); BUG_ON(arch == CPU_ARCH_UNKNOWN); load_write_pc_interworks = arch >= CPU_ARCH_ARMv5T; } #endif /* !test_load_write_pc_interworking */ #ifndef test_alu_write_pc_interworking bool alu_write_pc_interworks; void test_alu_write_pc_interworking(void) { int arch = cpu_architecture(); BUG_ON(arch == CPU_ARCH_UNKNOWN); alu_write_pc_interworks = arch >= CPU_ARCH_ARMv7; } #endif /* !test_alu_write_pc_interworking */ void arm_uprobe_decode_init(void) { find_str_pc_offset(); test_load_write_pc_interworking(); test_alu_write_pc_interworking(); } static unsigned long __check_eq(unsigned long cpsr) { return cpsr & PSR_Z_BIT; } static unsigned long __check_ne(unsigned long cpsr) { return (~cpsr) & PSR_Z_BIT; } static unsigned long __check_cs(unsigned long cpsr) { return cpsr & PSR_C_BIT; } static unsigned long __check_cc(unsigned long cpsr) { return (~cpsr) & PSR_C_BIT; } static unsigned long __check_mi(unsigned long cpsr) { return cpsr & PSR_N_BIT; } static unsigned long __check_pl(unsigned long cpsr) { return (~cpsr) & PSR_N_BIT; } static unsigned long __check_vs(unsigned long cpsr) { return cpsr & PSR_V_BIT; } static unsigned long __check_vc(unsigned long cpsr) { return (~cpsr) & PSR_V_BIT; } static unsigned long __check_hi(unsigned long cpsr) { cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ return cpsr & PSR_C_BIT; } static unsigned long __check_ls(unsigned long cpsr) { cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ return (~cpsr) & PSR_C_BIT; } static unsigned long __check_ge(unsigned long cpsr) { cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ return (~cpsr) & PSR_N_BIT; } static unsigned long __check_lt(unsigned long cpsr) { cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ return cpsr & PSR_N_BIT; } static unsigned long __check_gt(unsigned long cpsr) { unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */ return (~temp) & PSR_N_BIT; } static unsigned long __check_le(unsigned long cpsr) { unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */ return temp & PSR_N_BIT; } static unsigned long __check_al(unsigned long cpsr) { return true; } uprobe_check_cc * const uprobe_condition_checks[16] = { &__check_eq, &__check_ne, &__check_cs, &__check_cc, &__check_mi, &__check_pl, &__check_vs, &__check_vc, &__check_hi, &__check_ls, &__check_ge, &__check_lt, &__check_gt, &__check_le, &__check_al, &__check_al }; /* * To avoid the complications of mimicing single-stepping on a * processor without a Next-PC or a single-step mode, and to * avoid having to deal with the side-effects of boosting, we * simulate or emulate (almost) all ARM instructions. * * "Simulation" is where the instruction's behavior is duplicated in * C code. "Emulation" is where the original instruction is rewritten * and executed, often by altering its registers. * * By having all behavior of the uprobe'd instruction completed before * returning from the uprobe_handler(), all locks (scheduler and * interrupt) can safely be released. There is no need for secondary * breakpoints, no race with MP or preemptable kernels, nor having to * clean up resources counts at a later time impacting overall system * performance. By rewriting the instruction, only the minimum registers * need to be loaded and saved back optimizing performance. * * Calling the insnslot_*_rwflags version of a function doesn't hurt * anything even when the CPSR flags aren't updated by the * instruction. It's just a little slower in return for saving * a little space by not having a duplicate function that doesn't * update the flags. (The same optimization can be said for * instructions that do or don't perform register writeback) * Also, instructions can either read the flags, only write the * flags, or read and write the flags. To save combinations * rather than for sheer performance, flag functions just assume * read and write of flags. */ void uprobe_simulate_nop(struct uprobe_probept *p, struct pt_regs *regs) { } void uprobe_emulate_none(struct uprobe_probept *p, struct pt_regs *regs) { p->arch_info.insn_fn(); } static void simulate_ldm1stm1(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; int rn = (insn >> 16) & 0xf; int lbit = insn & (1 << 20); int wbit = insn & (1 << 21); int ubit = insn & (1 << 23); int pbit = insn & (1 << 24); long *addr = (long *)regs->uregs[rn]; int reg_bit_vector; int reg_count; reg_count = 0; reg_bit_vector = insn & 0xffff; while (reg_bit_vector) { reg_bit_vector &= (reg_bit_vector - 1); ++reg_count; } if (!ubit) addr -= reg_count; addr += (!pbit == !ubit); reg_bit_vector = insn & 0xffff; while (reg_bit_vector) { int reg = __ffs(reg_bit_vector); reg_bit_vector &= (reg_bit_vector - 1); if (lbit) regs->uregs[reg] = *addr++; else *addr++ = regs->uregs[reg]; } if (wbit) { if (!ubit) addr -= reg_count; addr -= (!pbit == !ubit); regs->uregs[rn] = (long)addr; } } static void simulate_stm1_pc(struct uprobe_probept *p, struct pt_regs *regs) { regs->ARM_pc = (long)p->vaddr + str_pc_offset; simulate_ldm1stm1(p, regs); regs->ARM_pc = (long)p->vaddr + 4; } static void simulate_ldm1_pc(struct uprobe_probept *p, struct pt_regs *regs) { simulate_ldm1stm1(p, regs); load_write_pc(regs->ARM_pc, regs); } static void emulate_generic_r0_12_noflags(struct uprobe_probept *p, struct pt_regs *regs) { register void *rregs asm("r1") = regs; register void *rfn asm("lr") = p->arch_info.insn_fn; __asm__ __volatile__ ( "stmdb sp!, {%[regs], r11} \n\t" "ldmia %[regs], {r0-r12} \n\t" #if __LINUX_ARM_ARCH__ >= 6 "blx %[fn] \n\t" #else "str %[fn], [sp, #-4]! \n\t" "adr lr, 1f \n\t" "ldr pc, [sp], #4 \n\t" "1: \n\t" #endif "ldr lr, [sp], #4 \n\t" /* lr = regs */ "stmia lr, {r0-r12} \n\t" "ldr r11, [sp], #4 \n\t" : [regs] "=r" (rregs), [fn] "=r" (rfn) : "0" (rregs), "1" (rfn) : "r0", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r12", "memory", "cc" ); } static void emulate_generic_r2_14_noflags(struct uprobe_probept *p, struct pt_regs *regs) { emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+2)); } static void emulate_ldm_r3_15(struct uprobe_probept *p, struct pt_regs *regs) { emulate_generic_r0_12_noflags(p, (struct pt_regs *)(regs->uregs+3)); load_write_pc(regs->ARM_pc, regs); } enum uprobe_insn uprobe_decode_ldmstm(uprobe_opcode_t insn, struct uprobe_probept_arch_info *ai) { uprobe_insn_handler_t *handler = 0; unsigned reglist = insn & 0xffff; int is_ldm = insn & 0x100000; int rn = (insn >> 16) & 0xf; if (rn <= 12 && (reglist & 0xe000) == 0) { /* Instruction only uses registers in the range R0..R12 */ handler = emulate_generic_r0_12_noflags; } else if (rn >= 2 && (reglist & 0x8003) == 0) { /* Instruction only uses registers in the range R2..R14 */ rn -= 2; reglist >>= 2; handler = emulate_generic_r2_14_noflags; } else if (rn >= 3 && (reglist & 0x0007) == 0) { /* Instruction only uses registers in the range R3..R15 */ if (is_ldm && (reglist & 0x8000)) { rn -= 3; reglist >>= 3; handler = emulate_ldm_r3_15; } } if (handler) { /* We can emulate the instruction in (possibly) modified form */ ai->insn[0] = (insn & 0xfff00000) | (rn << 16) | reglist; ai->insn_handler = handler; return INSN_GOOD; } /* Fallback to slower simulation... */ if (reglist & 0x8000) handler = is_ldm ? simulate_ldm1_pc : simulate_stm1_pc; else handler = simulate_ldm1stm1; ai->insn_handler = handler; return INSN_GOOD_NO_SLOT; } static void simulate_bbl(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; long iaddr = (long)p->vaddr; int disp = branch_displacement(insn); if (insn & (1 << 24)) regs->ARM_lr = iaddr + 4; regs->ARM_pc = iaddr + 8 + disp; } static void simulate_blx1(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; long iaddr = (long)p->vaddr; int disp = branch_displacement(insn); regs->ARM_lr = iaddr + 4; regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2); regs->ARM_cpsr |= PSR_T_BIT; } static void simulate_blx2bx(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; int rm = insn & 0xf; long rmv = regs->uregs[rm]; if (insn & (1 << 5)) regs->ARM_lr = (long)p->vaddr + 4; regs->ARM_pc = rmv & ~0x1; regs->ARM_cpsr &= ~PSR_T_BIT; if (rmv & 0x1) regs->ARM_cpsr |= PSR_T_BIT; } static void simulate_mrs(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; unsigned long mask = 0xf8ff03df; /* Mask out execution state */ regs->uregs[rd] = regs->ARM_cpsr & mask; } static void simulate_mov_ipsp(struct uprobe_probept *p, struct pt_regs *regs) { regs->uregs[12] = regs->uregs[13]; } static void emulate_ldrdstrd(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; unsigned long pc = (unsigned long)p->vaddr + 8; int rt = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; register unsigned long rtv asm("r0") = regs->uregs[rt]; register unsigned long rt2v asm("r1") = regs->uregs[rt+1]; register unsigned long rnv asm("r2") = (rn == 15) ? pc : regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; __asm__ __volatile__ ( BLX("%[fn]") : "=r" (rtv), "=r" (rt2v), "=r" (rnv) : "0" (rtv), "1" (rt2v), "2" (rnv), "r" (rmv), [fn] "r" (p->arch_info.insn_fn) : "lr", "memory", "cc" ); regs->uregs[rt] = rtv; regs->uregs[rt+1] = rt2v; if (is_writeback(insn)) regs->uregs[rn] = rnv; } static void emulate_ldr(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; unsigned long pc = (unsigned long)p->vaddr + 8; int rt = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; register unsigned long rtv asm("r0"); register unsigned long rnv asm("r2") = (rn == 15) ? pc : regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; __asm__ __volatile__ ( BLX("%[fn]") : "=r" (rtv), "=r" (rnv) : "1" (rnv), "r" (rmv), [fn] "r" (p->arch_info.insn_fn) : "lr", "memory", "cc" ); if (rt == 15) load_write_pc(rtv, regs); else regs->uregs[rt] = rtv; if (is_writeback(insn)) regs->uregs[rn] = rnv; } static void emulate_str(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; unsigned long rtpc = (unsigned long)p->vaddr + str_pc_offset; unsigned long rnpc = (unsigned long)p->vaddr + 8; int rt = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; register unsigned long rtv asm("r0") = (rt == 15) ? rtpc : regs->uregs[rt]; register unsigned long rnv asm("r2") = (rn == 15) ? rnpc : regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; __asm__ __volatile__ ( BLX("%[fn]") : "=r" (rnv) : "r" (rtv), "0" (rnv), "r" (rmv), [fn] "r" (p->arch_info.insn_fn) : "lr", "memory", "cc" ); if (is_writeback(insn)) regs->uregs[rn] = rnv; } static void emulate_rd12rn16rm0rs8_rwflags(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; unsigned long pc = (unsigned long)p->vaddr + 8; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; int rs = (insn >> 8) & 0xf; register unsigned long rdv asm("r0") = regs->uregs[rd]; register unsigned long rnv asm("r2") = (rn == 15) ? pc : regs->uregs[rn]; register unsigned long rmv asm("r3") = (rm == 15) ? pc : regs->uregs[rm]; register unsigned long rsv asm("r1") = regs->uregs[rs]; unsigned long cpsr = regs->ARM_cpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" BLX("%[fn]") "mrs %[cpsr], cpsr \n\t" : "=r" (rdv), [cpsr] "=r" (cpsr) : "0" (rdv), "r" (rnv), "r" (rmv), "r" (rsv), "1" (cpsr), [fn] "r" (p->arch_info.insn_fn) : "lr", "memory", "cc" ); if (rd == 15) alu_write_pc(rdv, regs); else regs->uregs[rd] = rdv; regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK); } static void emulate_rd12rn16rm0_rwflags_nopc(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rn = (insn >> 16) & 0xf; int rm = insn & 0xf; register unsigned long rdv asm("r0") = regs->uregs[rd]; register unsigned long rnv asm("r2") = regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; unsigned long cpsr = regs->ARM_cpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" BLX("%[fn]") "mrs %[cpsr], cpsr \n\t" : "=r" (rdv), [cpsr] "=r" (cpsr) : "0" (rdv), "r" (rnv), "r" (rmv), "1" (cpsr), [fn] "r" (p->arch_info.insn_fn) : "lr", "memory", "cc" ); regs->uregs[rd] = rdv; regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK); } static void emulate_rd16rn12rm0rs8_rwflags_nopc(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; int rd = (insn >> 16) & 0xf; int rn = (insn >> 12) & 0xf; int rm = insn & 0xf; int rs = (insn >> 8) & 0xf; register unsigned long rdv asm("r2") = regs->uregs[rd]; register unsigned long rnv asm("r0") = regs->uregs[rn]; register unsigned long rmv asm("r3") = regs->uregs[rm]; register unsigned long rsv asm("r1") = regs->uregs[rs]; unsigned long cpsr = regs->ARM_cpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" BLX("%[fn]") "mrs %[cpsr], cpsr \n\t" : "=r" (rdv), [cpsr] "=r" (cpsr) : "0" (rdv), "r" (rnv), "r" (rmv), "r" (rsv), "1" (cpsr), [fn] "r" (p->arch_info.insn_fn) : "lr", "memory", "cc" ); regs->uregs[rd] = rdv; regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK); } static void emulate_rd12rm0_noflags_nopc(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; int rd = (insn >> 12) & 0xf; int rm = insn & 0xf; register unsigned long rdv asm("r0") = regs->uregs[rd]; register unsigned long rmv asm("r3") = regs->uregs[rm]; __asm__ __volatile__ ( BLX("%[fn]") : "=r" (rdv) : "0" (rdv), "r" (rmv), [fn] "r" (p->arch_info.insn_fn) : "lr", "memory", "cc" ); regs->uregs[rd] = rdv; } static void emulate_rdlo12rdhi16rn0rm8_rwflags_nopc(struct uprobe_probept *p, struct pt_regs *regs) { uprobe_opcode_t insn = p->opcode; int rdlo = (insn >> 12) & 0xf; int rdhi = (insn >> 16) & 0xf; int rn = insn & 0xf; int rm = (insn >> 8) & 0xf; register unsigned long rdlov asm("r0") = regs->uregs[rdlo]; register unsigned long rdhiv asm("r2") = regs->uregs[rdhi]; register unsigned long rnv asm("r3") = regs->uregs[rn]; register unsigned long rmv asm("r1") = regs->uregs[rm]; unsigned long cpsr = regs->ARM_cpsr; __asm__ __volatile__ ( "msr cpsr_fs, %[cpsr] \n\t" BLX("%[fn]") "mrs %[cpsr], cpsr \n\t" : "=r" (rdlov), "=r" (rdhiv), [cpsr] "=r" (cpsr) : "0" (rdlov), "1" (rdhiv), "r" (rnv), "r" (rmv), "2" (cpsr), [fn] "r" (p->arch_info.insn_fn) : "lr", "memory", "cc" ); regs->uregs[rdlo] = rdlov; regs->uregs[rdhi] = rdhiv; regs->ARM_cpsr = (regs->ARM_cpsr & ~APSR_MASK) | (cpsr & APSR_MASK); } /* * For the instruction masking and comparisons in all the "space_*" * functions below, Do _not_ rearrange the order of tests unless * you're very, very sure of what you are doing. For the sake of * efficiency, the masks for some tests sometimes assume other test * have been done prior to them so the number of patterns to test * for an instruction set can be as broad as possible to reduce the * number of tests needed. */ static const union decode_item arm_1111_table[] = { /* Unconditional instructions */ /* memory hint 1111 0100 x001 xxxx xxxx xxxx xxxx xxxx */ /* PLDI (immediate) 1111 0100 x101 xxxx xxxx xxxx xxxx xxxx */ /* PLDW (immediate) 1111 0101 x001 xxxx xxxx xxxx xxxx xxxx */ /* PLD (immediate) 1111 0101 x101 xxxx xxxx xxxx xxxx xxxx */ DECODE_SIMULATE (0xfe300000, 0xf4100000, uprobe_simulate_nop), /* memory hint 1111 0110 x001 xxxx xxxx xxxx xxx0 xxxx */ /* PLDI (register) 1111 0110 x101 xxxx xxxx xxxx xxx0 xxxx */ /* PLDW (register) 1111 0111 x001 xxxx xxxx xxxx xxx0 xxxx */ /* PLD (register) 1111 0111 x101 xxxx xxxx xxxx xxx0 xxxx */ DECODE_SIMULATE (0xfe300010, 0xf6100000, uprobe_simulate_nop), /* BLX (immediate) 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx */ DECODE_SIMULATE (0xfe000000, 0xfa000000, simulate_blx1), /* CPS 1111 0001 0000 xxx0 xxxx xxxx xx0x xxxx */ /* SETEND 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */ /* SRS 1111 100x x1x0 xxxx xxxx xxxx xxxx xxxx */ /* RFE 1111 100x x0x1 xxxx xxxx xxxx xxxx xxxx */ /* Coprocessor instructions... */ /* MCRR2 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx */ /* MRRC2 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx */ /* LDC2 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */ /* STC2 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */ /* CDP2 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */ /* MCR2 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */ /* MRC2 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */ /* Other unallocated instructions... */ DECODE_END }; static const union decode_item arm_cccc_0001_0xx0____0xxx_table[] = { /* Miscellaneous instructions */ /* MRS cpsr cccc 0001 0000 xxxx xxxx xxxx 0000 xxxx */ DECODE_SIMULATEX(0x0ff000f0, 0x01000000, simulate_mrs, REGS(0, NOPC, 0, 0, 0)), /* BX cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */ DECODE_SIMULATE (0x0ff000f0, 0x01200010, simulate_blx2bx), /* BLX (register) cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */ DECODE_SIMULATEX(0x0ff000f0, 0x01200030, simulate_blx2bx, REGS(0, 0, 0, 0, NOPC)), /* CLZ cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */ DECODE_EMULATEX (0x0ff000f0, 0x01600010, emulate_rd12rm0_noflags_nopc, REGS(0, NOPC, 0, 0, NOPC)), /* QADD cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx */ /* QSUB cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx */ /* QDADD cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx */ /* QDSUB cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx */ DECODE_EMULATEX (0x0f9000f0, 0x01000050, emulate_rd12rn16rm0_rwflags_nopc, REGS(NOPC, NOPC, 0, 0, NOPC)), /* BXJ cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */ /* MSR cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */ /* MRS spsr cccc 0001 0100 xxxx xxxx xxxx 0000 xxxx */ /* BKPT 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */ /* SMC cccc 0001 0110 xxxx xxxx xxxx 0111 xxxx */ /* And unallocated instructions... */ DECODE_END }; static const union decode_item arm_cccc_0001_0xx0____1xx0_table[] = { /* Halfword multiply and multiply-accumulate */ /* SMLALxy cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */ DECODE_EMULATEX (0x0ff00090, 0x01400080, emulate_rdlo12rdhi16rn0rm8_rwflags_nopc, REGS(NOPC, NOPC, NOPC, 0, NOPC)), /* SMULWy cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */ DECODE_OR (0x0ff000b0, 0x012000a0), /* SMULxy cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */ DECODE_EMULATEX (0x0ff00090, 0x01600080, emulate_rd16rn12rm0rs8_rwflags_nopc, REGS(NOPC, 0, NOPC, 0, NOPC)), /* SMLAxy cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx */ DECODE_OR (0x0ff00090, 0x01000080), /* SMLAWy cccc 0001 0010 xxxx xxxx xxxx 1x00 xxxx */ DECODE_EMULATEX (0x0ff000b0, 0x01200080, emulate_rd16rn12rm0rs8_rwflags_nopc, REGS(NOPC, NOPC, NOPC, 0, NOPC)), DECODE_END }; static const union decode_item arm_cccc_0000_____1001_table[] = { /* Multiply and multiply-accumulate */ /* MUL cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx */ /* MULS cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx */ DECODE_EMULATEX (0x0fe000f0, 0x00000090, emulate_rd16rn12rm0rs8_rwflags_nopc, REGS(NOPC, 0, NOPC, 0, NOPC)), /* MLA cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx */ /* MLAS cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx */ DECODE_OR (0x0fe000f0, 0x00200090), /* MLS cccc 0000 0110 xxxx xxxx xxxx 1001 xxxx */ DECODE_EMULATEX (0x0ff000f0, 0x00600090, emulate_rd16rn12rm0rs8_rwflags_nopc, REGS(NOPC, NOPC, NOPC, 0, NOPC)), /* UMAAL cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx */ DECODE_OR (0x0ff000f0, 0x00400090), /* UMULL cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx */ /* UMULLS cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx */ /* UMLAL cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx */ /* UMLALS cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx */ /* SMULL cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx */ /* SMULLS cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx */ /* SMLAL cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx */ /* SMLALS cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx */ DECODE_EMULATEX (0x0f8000f0, 0x00800090, emulate_rdlo12rdhi16rn0rm8_rwflags_nopc, REGS(NOPC, NOPC, NOPC, 0, NOPC)), DECODE_END }; static const union decode_item arm_cccc_0001_____1001_table[] = { /* Synchronization primitives */ /* SMP/SWPB cccc 0001 0x00 xxxx xxxx xxxx 1001 xxxx */ DECODE_EMULATEX (0x0fb000f0, 0x01000090, emulate_rd12rn16rm0_rwflags_nopc, REGS(NOPC, NOPC, 0, 0, NOPC)), /* LDREX/STREX{,D,B,H} cccc 0001 1xxx xxxx xxxx xxxx 1001 xxxx */ /* And unallocated instructions... */ DECODE_END }; static const union decode_item arm_cccc_000x_____1xx1_table[] = { /* Extra load/store instructions */ /* STRHT cccc 0000 xx10 xxxx xxxx xxxx 1011 xxxx */ /* ??? cccc 0000 xx10 xxxx xxxx xxxx 11x1 xxxx */ /* LDRHT cccc 0000 xx11 xxxx xxxx xxxx 1011 xxxx */ /* LDRSBT cccc 0000 xx11 xxxx xxxx xxxx 1101 xxxx */ /* LDRSHT cccc 0000 xx11 xxxx xxxx xxxx 1111 xxxx */ DECODE_REJECT (0x0f200090, 0x00200090), /* LDRD/STRD lr,pc,{... cccc 000x x0x0 xxxx 111x xxxx 1101 xxxx */ DECODE_REJECT (0x0e10e0d0, 0x0000e0d0), /* LDRD (register) cccc 000x x0x0 xxxx xxxx xxxx 1101 xxxx */ /* STRD (register) cccc 000x x0x0 xxxx xxxx xxxx 1111 xxxx */ DECODE_EMULATEX (0x0e5000d0, 0x000000d0, emulate_ldrdstrd, REGS(NOPCWB, NOPCX, 0, 0, NOPC)), /* LDRD (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1101 xxxx */ /* STRD (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1111 xxxx */ DECODE_EMULATEX (0x0e5000d0, 0x004000d0, emulate_ldrdstrd, REGS(NOPCWB, NOPCX, 0, 0, 0)), /* STRH (register) cccc 000x x0x0 xxxx xxxx xxxx 1011 xxxx */ DECODE_EMULATEX (0x0e5000f0, 0x000000b0, emulate_str, REGS(NOPCWB, NOPC, 0, 0, NOPC)), /* LDRH (register) cccc 000x x0x1 xxxx xxxx xxxx 1011 xxxx */ /* LDRSB (register) cccc 000x x0x1 xxxx xxxx xxxx 1101 xxxx */ /* LDRSH (register) cccc 000x x0x1 xxxx xxxx xxxx 1111 xxxx */ DECODE_EMULATEX (0x0e500090, 0x00100090, emulate_ldr, REGS(NOPCWB, NOPC, 0, 0, NOPC)), /* STRH (immediate) cccc 000x x1x0 xxxx xxxx xxxx 1011 xxxx */ DECODE_EMULATEX (0x0e5000f0, 0x004000b0, emulate_str, REGS(NOPCWB, NOPC, 0, 0, 0)), /* LDRH (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1011 xxxx */ /* LDRSB (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1101 xxxx */ /* LDRSH (immediate) cccc 000x x1x1 xxxx xxxx xxxx 1111 xxxx */ DECODE_EMULATEX (0x0e500090, 0x00500090, emulate_ldr, REGS(NOPCWB, NOPC, 0, 0, 0)), DECODE_END }; static const union decode_item arm_cccc_000x_table[] = { /* Data-processing (register) */ /* S PC, ... cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx */ DECODE_REJECT (0x0e10f000, 0x0010f000), /* MOV IP, SP 1110 0001 1010 0000 1100 0000 0000 1101 */ DECODE_SIMULATE (0xffffffff, 0xe1a0c00d, simulate_mov_ipsp), /* TST (register) cccc 0001 0001 xxxx xxxx xxxx xxx0 xxxx */ /* TEQ (register) cccc 0001 0011 xxxx xxxx xxxx xxx0 xxxx */ /* CMP (register) cccc 0001 0101 xxxx xxxx xxxx xxx0 xxxx */ /* CMN (register) cccc 0001 0111 xxxx xxxx xxxx xxx0 xxxx */ DECODE_EMULATEX (0x0f900010, 0x01100000, emulate_rd12rn16rm0rs8_rwflags, REGS(ANY, 0, 0, 0, ANY)), /* MOV (register) cccc 0001 101x xxxx xxxx xxxx xxx0 xxxx */ /* MVN (register) cccc 0001 111x xxxx xxxx xxxx xxx0 xxxx */ DECODE_EMULATEX (0x0fa00010, 0x01a00000, emulate_rd12rn16rm0rs8_rwflags, REGS(0, ANY, 0, 0, ANY)), /* AND (register) cccc 0000 000x xxxx xxxx xxxx xxx0 xxxx */ /* EOR (register) cccc 0000 001x xxxx xxxx xxxx xxx0 xxxx */ /* SUB (register) cccc 0000 010x xxxx xxxx xxxx xxx0 xxxx */ /* RSB (register) cccc 0000 011x xxxx xxxx xxxx xxx0 xxxx */ /* ADD (register) cccc 0000 100x xxxx xxxx xxxx xxx0 xxxx */ /* ADC (register) cccc 0000 101x xxxx xxxx xxxx xxx0 xxxx */ /* SBC (register) cccc 0000 110x xxxx xxxx xxxx xxx0 xxxx */ /* RSC (register) cccc 0000 111x xxxx xxxx xxxx xxx0 xxxx */ /* ORR (register) cccc 0001 100x xxxx xxxx xxxx xxx0 xxxx */ /* BIC (register) cccc 0001 110x xxxx xxxx xxxx xxx0 xxxx */ DECODE_EMULATEX (0x0e000010, 0x00000000, emulate_rd12rn16rm0rs8_rwflags, REGS(ANY, ANY, 0, 0, ANY)), /* TST (reg-shift reg) cccc 0001 0001 xxxx xxxx xxxx 0xx1 xxxx */ /* TEQ (reg-shift reg) cccc 0001 0011 xxxx xxxx xxxx 0xx1 xxxx */ /* CMP (reg-shift reg) cccc 0001 0101 xxxx xxxx xxxx 0xx1 xxxx */ /* CMN (reg-shift reg) cccc 0001 0111 xxxx xxxx xxxx 0xx1 xxxx */ DECODE_EMULATEX (0x0f900090, 0x01100010, emulate_rd12rn16rm0rs8_rwflags, REGS(ANY, 0, NOPC, 0, ANY)), /* MOV (reg-shift reg) cccc 0001 101x xxxx xxxx xxxx 0xx1 xxxx */ /* MVN (reg-shift reg) cccc 0001 111x xxxx xxxx xxxx 0xx1 xxxx */ DECODE_EMULATEX (0x0fa00090, 0x01a00010, emulate_rd12rn16rm0rs8_rwflags, REGS(0, ANY, NOPC, 0, ANY)), /* AND (reg-shift reg) cccc 0000 000x xxxx xxxx xxxx 0xx1 xxxx */ /* EOR (reg-shift reg) cccc 0000 001x xxxx xxxx xxxx 0xx1 xxxx */ /* SUB (reg-shift reg) cccc 0000 010x xxxx xxxx xxxx 0xx1 xxxx */ /* RSB (reg-shift reg) cccc 0000 011x xxxx xxxx xxxx 0xx1 xxxx */ /* ADD (reg-shift reg) cccc 0000 100x xxxx xxxx xxxx 0xx1 xxxx */ /* ADC (reg-shift reg) cccc 0000 101x xxxx xxxx xxxx 0xx1 xxxx */ /* SBC (reg-shift reg) cccc 0000 110x xxxx xxxx xxxx 0xx1 xxxx */ /* RSC (reg-shift reg) cccc 0000 111x xxxx xxxx xxxx 0xx1 xxxx */ /* ORR (reg-shift reg) cccc 0001 100x xxxx xxxx xxxx 0xx1 xxxx */ /* BIC (reg-shift reg) cccc 0001 110x xxxx xxxx xxxx 0xx1 xxxx */ DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags, REGS(ANY, ANY, NOPC, 0, ANY)), DECODE_END }; static const union decode_item arm_cccc_001x_table[] = { /* Data-processing (immediate) */ /* MOVW cccc 0011 0000 xxxx xxxx xxxx xxxx xxxx */ /* MOVT cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx */ DECODE_EMULATEX (0x0fb00000, 0x03000000, emulate_rd12rm0_noflags_nopc, REGS(0, NOPC, 0, 0, 0)), /* YIELD cccc 0011 0010 0000 xxxx xxxx 0000 0001 */ DECODE_OR (0x0fff00ff, 0x03200001), /* SEV cccc 0011 0010 0000 xxxx xxxx 0000 0100 */ DECODE_EMULATE (0x0fff00ff, 0x03200004, uprobe_emulate_none), /* NOP cccc 0011 0010 0000 xxxx xxxx 0000 0000 */ /* WFE cccc 0011 0010 0000 xxxx xxxx 0000 0010 */ /* WFI cccc 0011 0010 0000 xxxx xxxx 0000 0011 */ DECODE_SIMULATE (0x0fff00fc, 0x03200000, uprobe_simulate_nop), /* DBG cccc 0011 0010 0000 xxxx xxxx ffff xxxx */ /* unallocated hints cccc 0011 0010 0000 xxxx xxxx xxxx xxxx */ /* MSR (immediate) cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx */ DECODE_REJECT (0x0fb00000, 0x03200000), /* S PC, ... cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx */ DECODE_REJECT (0x0e10f000, 0x0210f000), /* TST (immediate) cccc 0011 0001 xxxx xxxx xxxx xxxx xxxx */ /* TEQ (immediate) cccc 0011 0011 xxxx xxxx xxxx xxxx xxxx */ /* CMP (immediate) cccc 0011 0101 xxxx xxxx xxxx xxxx xxxx */ /* CMN (immediate) cccc 0011 0111 xxxx xxxx xxxx xxxx xxxx */ DECODE_EMULATEX (0x0f900000, 0x03100000, emulate_rd12rn16rm0rs8_rwflags, REGS(ANY, 0, 0, 0, 0)), /* MOV (immediate) cccc 0011 101x xxxx xxxx xxxx xxxx xxxx */ /* MVN (immediate) cccc 0011 111x xxxx xxxx xxxx xxxx xxxx */ DECODE_EMULATEX (0x0fa00000, 0x03a00000, emulate_rd12rn16rm0rs8_rwflags, REGS(0, ANY, 0, 0, 0)), /* AND (immediate) cccc 0010 000x xxxx xxxx xxxx xxxx xxxx */ /* EOR (immediate) cccc 0010 001x xxxx xxxx xxxx xxxx xxxx */ /* SUB (immediate) cccc 0010 010x xxxx xxxx xxxx xxxx xxxx */ /* RSB (immediate) cccc 0010 011x xxxx xxxx xxxx xxxx xxxx */ /* ADD (immediate) cccc 0010 100x xxxx xxxx xxxx xxxx xxxx */ /* ADC (immediate) cccc 0010 101x xxxx xxxx xxxx xxxx xxxx */ /* SBC (immediate) cccc 0010 110x xxxx xxxx xxxx xxxx xxxx */ /* RSC (immediate) cccc 0010 111x xxxx xxxx xxxx xxxx xxxx */ /* ORR (immediate) cccc 0011 100x xxxx xxxx xxxx xxxx xxxx */ /* BIC (immediate) cccc 0011 110x xxxx xxxx xxxx xxxx xxxx */ DECODE_EMULATEX (0x0e000000, 0x02000000, emulate_rd12rn16rm0rs8_rwflags, REGS(ANY, ANY, 0, 0, 0)), DECODE_END }; static const union decode_item arm_cccc_0110_____xxx1_table[] = { /* Media instructions */ /* SEL cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx */ DECODE_EMULATEX (0x0ff000f0, 0x068000b0, emulate_rd12rn16rm0_rwflags_nopc, REGS(NOPC, NOPC, 0, 0, NOPC)), /* SSAT cccc 0110 101x xxxx xxxx xxxx xx01 xxxx */ /* USAT cccc 0110 111x xxxx xxxx xxxx xx01 xxxx */ DECODE_OR(0x0fa00030, 0x06a00010), /* SSAT16 cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx */ /* USAT16 cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx */ DECODE_EMULATEX (0x0fb000f0, 0x06a00030, emulate_rd12rn16rm0_rwflags_nopc, REGS(0, NOPC, 0, 0, NOPC)), /* REV cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */ /* REV16 cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */ /* RBIT cccc 0110 1111 xxxx xxxx xxxx 0011 xxxx */ /* REVSH cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */ DECODE_EMULATEX (0x0fb00070, 0x06b00030, emulate_rd12rm0_noflags_nopc, REGS(0, NOPC, 0, 0, NOPC)), /* ??? cccc 0110 0x00 xxxx xxxx xxxx xxx1 xxxx */ DECODE_REJECT (0x0fb00010, 0x06000010), /* ??? cccc 0110 0xxx xxxx xxxx xxxx 1011 xxxx */ DECODE_REJECT (0x0f8000f0, 0x060000b0), /* ??? cccc 0110 0xxx xxxx xxxx xxxx 1101 xxxx */ DECODE_REJECT (0x0f8000f0, 0x060000d0), /* SADD16 cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx */ /* SADDSUBX cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx */ /* SSUBADDX cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx */ /* SSUB16 cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx */ /* SADD8 cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx */ /* SSUB8 cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx */ /* QADD16 cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx */ /* QADDSUBX cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx */ /* QSUBADDX cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx */ /* QSUB16 cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx */ /* QADD8 cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx */ /* QSUB8 cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx */ /* SHADD16 cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx */ /* SHADDSUBX cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx */ /* SHSUBADDX cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx */ /* SHSUB16 cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx */ /* SHADD8 cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx */ /* SHSUB8 cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx */ /* UADD16 cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx */ /* UADDSUBX cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx */ /* USUBADDX cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx */ /* USUB16 cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx */ /* UADD8 cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx */ /* USUB8 cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx */ /* UQADD16 cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx */ /* UQADDSUBX cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx */ /* UQSUBADDX cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx */ /* UQSUB16 cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx */ /* UQADD8 cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx */ /* UQSUB8 cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx */ /* UHADD16 cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx */ /* UHADDSUBX cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx */ /* UHSUBADDX cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx */ /* UHSUB16 cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx */ /* UHADD8 cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx */ /* UHSUB8 cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx */ DECODE_EMULATEX (0x0f800010, 0x06000010, emulate_rd12rn16rm0_rwflags_nopc, REGS(NOPC, NOPC, 0, 0, NOPC)), /* PKHBT cccc 0110 1000 xxxx xxxx xxxx x001 xxxx */ /* PKHTB cccc 0110 1000 xxxx xxxx xxxx x101 xxxx */ DECODE_EMULATEX (0x0ff00030, 0x06800010, emulate_rd12rn16rm0_rwflags_nopc, REGS(NOPC, NOPC, 0, 0, NOPC)), /* ??? cccc 0110 1001 xxxx xxxx xxxx 0111 xxxx */ /* ??? cccc 0110 1101 xxxx xxxx xxxx 0111 xxxx */ DECODE_REJECT (0x0fb000f0, 0x06900070), /* SXTB16 cccc 0110 1000 1111 xxxx xxxx 0111 xxxx */ /* SXTB cccc 0110 1010 1111 xxxx xxxx 0111 xxxx */ /* SXTH cccc 0110 1011 1111 xxxx xxxx 0111 xxxx */ /* UXTB16 cccc 0110 1100 1111 xxxx xxxx 0111 xxxx */ /* UXTB cccc 0110 1110 1111 xxxx xxxx 0111 xxxx */ /* UXTH cccc 0110 1111 1111 xxxx xxxx 0111 xxxx */ DECODE_EMULATEX (0x0f8f00f0, 0x068f0070, emulate_rd12rm0_noflags_nopc, REGS(0, NOPC, 0, 0, NOPC)), /* SXTAB16 cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx */ /* SXTAB cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx */ /* SXTAH cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx */ /* UXTAB16 cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx */ /* UXTAB cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx */ /* UXTAH cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx */ DECODE_EMULATEX (0x0f8000f0, 0x06800070, emulate_rd12rn16rm0_rwflags_nopc, REGS(NOPCX, NOPC, 0, 0, NOPC)), DECODE_END }; static const union decode_item arm_cccc_0111_____xxx1_table[] = { /* Media instructions */ /* UNDEFINED cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */ DECODE_REJECT (0x0ff000f0, 0x07f000f0), /* SMLALD cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */ /* SMLSLD cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */ DECODE_EMULATEX (0x0ff00090, 0x07400010, emulate_rdlo12rdhi16rn0rm8_rwflags_nopc, REGS(NOPC, NOPC, NOPC, 0, NOPC)), /* SMUAD cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx */ /* SMUSD cccc 0111 0000 xxxx 1111 xxxx 01x1 xxxx */ DECODE_OR (0x0ff0f090, 0x0700f010), /* SMMUL cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx */ DECODE_OR (0x0ff0f0d0, 0x0750f010), /* USAD8 cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */ DECODE_EMULATEX (0x0ff0f0f0, 0x0780f010, emulate_rd16rn12rm0rs8_rwflags_nopc, REGS(NOPC, 0, NOPC, 0, NOPC)), /* SMLAD cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx */ /* SMLSD cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx */ DECODE_OR (0x0ff00090, 0x07000010), /* SMMLA cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx */ DECODE_OR (0x0ff000d0, 0x07500010), /* USADA8 cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */ DECODE_EMULATEX (0x0ff000f0, 0x07800010, emulate_rd16rn12rm0rs8_rwflags_nopc, REGS(NOPC, NOPCX, NOPC, 0, NOPC)), /* SMMLS cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx */ DECODE_EMULATEX (0x0ff000d0, 0x075000d0, emulate_rd16rn12rm0rs8_rwflags_nopc, REGS(NOPC, NOPC, NOPC, 0, NOPC)), /* SBFX cccc 0111 101x xxxx xxxx xxxx x101 xxxx */ /* UBFX cccc 0111 111x xxxx xxxx xxxx x101 xxxx */ DECODE_EMULATEX (0x0fa00070, 0x07a00050, emulate_rd12rm0_noflags_nopc, REGS(0, NOPC, 0, 0, NOPC)), /* BFC cccc 0111 110x xxxx xxxx xxxx x001 1111 */ DECODE_EMULATEX (0x0fe0007f, 0x07c0001f, emulate_rd12rm0_noflags_nopc, REGS(0, NOPC, 0, 0, 0)), /* BFI cccc 0111 110x xxxx xxxx xxxx x001 xxxx */ DECODE_EMULATEX (0x0fe00070, 0x07c00010, emulate_rd12rm0_noflags_nopc, REGS(0, NOPC, 0, 0, NOPCX)), DECODE_END }; static const union decode_item arm_cccc_01xx_table[] = { /* Load/store word and unsigned byte */ /* LDRB/STRB pc,[...] cccc 01xx x0xx xxxx xxxx xxxx xxxx xxxx */ DECODE_REJECT (0x0c40f000, 0x0440f000), /* STRT cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */ /* LDRT cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */ /* STRBT cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */ /* LDRBT cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */ DECODE_REJECT (0x0d200000, 0x04200000), /* STR (immediate) cccc 010x x0x0 xxxx xxxx xxxx xxxx xxxx */ /* STRB (immediate) cccc 010x x1x0 xxxx xxxx xxxx xxxx xxxx */ DECODE_EMULATEX (0x0e100000, 0x04000000, emulate_str, REGS(NOPCWB, ANY, 0, 0, 0)), /* LDR (immediate) cccc 010x x0x1 xxxx xxxx xxxx xxxx xxxx */ /* LDRB (immediate) cccc 010x x1x1 xxxx xxxx xxxx xxxx xxxx */ DECODE_EMULATEX (0x0e100000, 0x04100000, emulate_ldr, REGS(NOPCWB, ANY, 0, 0, 0)), /* STR (register) cccc 011x x0x0 xxxx xxxx xxxx xxxx xxxx */ /* STRB (register) cccc 011x x1x0 xxxx xxxx xxxx xxxx xxxx */ DECODE_EMULATEX (0x0e100000, 0x06000000, emulate_str, REGS(NOPCWB, ANY, 0, 0, NOPC)), /* LDR (register) cccc 011x x0x1 xxxx xxxx xxxx xxxx xxxx */ /* LDRB (register) cccc 011x x1x1 xxxx xxxx xxxx xxxx xxxx */ DECODE_EMULATEX (0x0e100000, 0x06100000, emulate_ldr, REGS(NOPCWB, ANY, 0, 0, NOPC)), DECODE_END }; static const union decode_item arm_cccc_100x_table[] = { /* Block data transfer instructions */ /* LDM cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */ /* STM cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */ DECODE_CUSTOM (0x0e400000, 0x08000000, uprobe_decode_ldmstm), /* STM (user registers) cccc 100x x1x0 xxxx xxxx xxxx xxxx xxxx */ /* LDM (user registers) cccc 100x x1x1 xxxx 0xxx xxxx xxxx xxxx */ /* LDM (exception ret) cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */ DECODE_END }; const union decode_item uprobe_decode_arm_table[] = { /* * Unconditional instructions * 1111 xxxx xxxx xxxx xxxx xxxx xxxx xxxx */ DECODE_TABLE (0xf0000000, 0xf0000000, arm_1111_table), /* * Miscellaneous instructions * cccc 0001 0xx0 xxxx xxxx xxxx 0xxx xxxx */ DECODE_TABLE (0x0f900080, 0x01000000, arm_cccc_0001_0xx0____0xxx_table), /* * Halfword multiply and multiply-accumulate * cccc 0001 0xx0 xxxx xxxx xxxx 1xx0 xxxx */ DECODE_TABLE (0x0f900090, 0x01000080, arm_cccc_0001_0xx0____1xx0_table), /* * Multiply and multiply-accumulate * cccc 0000 xxxx xxxx xxxx xxxx 1001 xxxx */ DECODE_TABLE (0x0f0000f0, 0x00000090, arm_cccc_0000_____1001_table), /* * Synchronization primitives * cccc 0001 xxxx xxxx xxxx xxxx 1001 xxxx */ DECODE_TABLE (0x0f0000f0, 0x01000090, arm_cccc_0001_____1001_table), /* * Extra load/store instructions * cccc 000x xxxx xxxx xxxx xxxx 1xx1 xxxx */ DECODE_TABLE (0x0e000090, 0x00000090, arm_cccc_000x_____1xx1_table), /* * Data-processing (register) * cccc 000x xxxx xxxx xxxx xxxx xxx0 xxxx * Data-processing (register-shifted register) * cccc 000x xxxx xxxx xxxx xxxx 0xx1 xxxx */ DECODE_TABLE (0x0e000000, 0x00000000, arm_cccc_000x_table), /* * Data-processing (immediate) * cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx */ DECODE_TABLE (0x0e000000, 0x02000000, arm_cccc_001x_table), /* * Media instructions * cccc 011x xxxx xxxx xxxx xxxx xxx1 xxxx */ DECODE_TABLE (0x0f000010, 0x06000010, arm_cccc_0110_____xxx1_table), DECODE_TABLE (0x0f000010, 0x07000010, arm_cccc_0111_____xxx1_table), /* * Load/store word and unsigned byte * cccc 01xx xxxx xxxx xxxx xxxx xxxx xxxx */ DECODE_TABLE (0x0c000000, 0x04000000, arm_cccc_01xx_table), /* * Block data transfer instructions * cccc 100x xxxx xxxx xxxx xxxx xxxx xxxx */ DECODE_TABLE (0x0e000000, 0x08000000, arm_cccc_100x_table), /* B cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */ /* BL cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */ DECODE_SIMULATE (0x0e000000, 0x0a000000, simulate_bbl), /* * Supervisor Call, and coprocessor instructions */ /* MCRR cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx */ /* MRRC cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx */ /* LDC cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */ /* STC cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */ /* CDP cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */ /* MCR cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */ /* MRC cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */ /* SVC cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */ DECODE_REJECT (0x0c000000, 0x0c000000), DECODE_END }; /* * Prepare an instruction slot to receive an instruction for emulating. * This is done by placing a subroutine return after the location where the * instruction will be placed. We also modify ARM instructions to be * unconditional as the condition code will already be checked before any * emulation handler is called. */ static uprobe_opcode_t prepare_emulated_insn(uprobe_opcode_t insn, struct uprobe_probept_arch_info *ai) { ai->insn[1] = 0xe1a0f00e; /* mov pc, lr */ /* Make an ARM instruction unconditional */ if (insn < 0xe0000000) insn = (insn | 0xe0000000) & ~0x10000000; return insn; } /* * Write a (probably modified) instruction into the slot previously prepared by * prepare_emulated_insn */ static void set_emulated_insn(uprobe_opcode_t insn, struct uprobe_probept_arch_info *ai) { ai->insn[0] = insn; } /* * When we modify the register numbers encoded in an instruction to be emulated, * the new values come from this define. For ARM and 32-bit Thumb instructions * this gives... * * bit position 16 12 8 4 0 * ---------------+---+---+---+---+---+ * register r2 r0 r1 -- r3 */ #define INSN_NEW_BITS 0x00020103 /* Each nibble has same value as that at INSN_NEW_BITS bit 16 */ #define INSN_SAMEAS16_BITS 0x22222222 /* * Validate and modify each of the registers encoded in an instruction. * * Each nibble in regs contains a value from enum decode_reg_type. For each * non-zero value, the corresponding nibble in pinsn is validated and modified * according to the type. */ static bool decode_regs(uprobe_opcode_t* pinsn, u32 regs) { uprobe_opcode_t insn = *pinsn; uprobe_opcode_t mask = 0xf; /* Start at least significant nibble */ for (; regs != 0; regs >>= 4, mask <<= 4) { uprobe_opcode_t new_bits = INSN_NEW_BITS; switch (regs & 0xf) { case REG_TYPE_NONE: /* Nibble not a register, skip to next */ continue; case REG_TYPE_ANY: /* Any register is allowed */ break; case REG_TYPE_SAMEAS16: /* Replace register with same as at bit position 16 */ new_bits = INSN_SAMEAS16_BITS; break; case REG_TYPE_SP: /* Only allow SP (R13) */ if ((insn ^ 0xdddddddd) & mask) goto reject; break; case REG_TYPE_PC: /* Only allow PC (R15) */ if ((insn ^ 0xffffffff) & mask) goto reject; break; case REG_TYPE_NOSP: /* Reject SP (R13) */ if (((insn ^ 0xdddddddd) & mask) == 0) goto reject; break; case REG_TYPE_NOSPPC: case REG_TYPE_NOSPPCX: /* Reject SP and PC (R13 and R15) */ if (((insn ^ 0xdddddddd) & 0xdddddddd & mask) == 0) goto reject; break; case REG_TYPE_NOPCWB: if (!is_writeback(insn)) break; /* No writeback, so any register is OK */ /* fall through... */ case REG_TYPE_NOPC: case REG_TYPE_NOPCX: /* Reject PC (R15) */ if (((insn ^ 0xffffffff) & mask) == 0) goto reject; break; } /* Replace value of nibble with new register number... */ insn &= ~mask; insn |= new_bits & mask; } *pinsn = insn; return true; reject: return false; } static const int decode_struct_sizes[NUM_DECODE_TYPES] = { [DECODE_TYPE_TABLE] = sizeof(struct decode_table), [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom), [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate), [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate), [DECODE_TYPE_OR] = sizeof(struct decode_or), [DECODE_TYPE_REJECT] = sizeof(struct decode_reject) }; /* * uprobe_decode_insn operates on data tables in order to decode an ARM * architecture instruction onto which a uprobe has been placed. * * These instruction decoding tables are a concatenation of entries each * of which consist of one of the following structs: * * decode_table * decode_custom * decode_simulate * decode_emulate * decode_or * decode_reject * * Each of these starts with a struct decode_header which has the following * fields: * * type_regs * mask * value * * The least significant DECODE_TYPE_BITS of type_regs contains a value * from enum decode_type, this indicates which of the decode_* structs * the entry contains. The value DECODE_TYPE_END indicates the end of the * table. * * When the table is parsed, each entry is checked in turn to see if it * matches the instruction to be decoded using the test: * * (insn & mask) == value * * If no match is found before the end of the table is reached then decoding * fails with INSN_REJECTED. * * When a match is found, decode_regs() is called to validate and modify each * of the registers encoded in the instruction; the data it uses to do this * is (type_regs >> DECODE_TYPE_BITS). A validation failure will cause decoding * to fail with INSN_REJECTED. * * Once the instruction has passed the above tests, further processing * depends on the type of the table entry's decode struct. * */ int uprobe_decode_insn(uprobe_opcode_t insn, struct uprobe_probept_arch_info *ai, const union decode_item *table) { const struct decode_header *h = (struct decode_header *)table; const struct decode_header *next; bool matched = false; insn = prepare_emulated_insn(insn, ai); for (;; h = next) { enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; u32 regs = h->type_regs.bits >> DECODE_TYPE_BITS; if (type == DECODE_TYPE_END) return INSN_REJECTED; next = (struct decode_header *) ((uintptr_t)h + decode_struct_sizes[type]); if (!matched && (insn & h->mask.bits) != h->value.bits) continue; if (!decode_regs(&insn, regs)) return INSN_REJECTED; switch (type) { case DECODE_TYPE_TABLE: { struct decode_table *d = (struct decode_table *)h; next = (struct decode_header *)d->table.table; break; } case DECODE_TYPE_CUSTOM: { struct decode_custom *d = (struct decode_custom *)h; return (*d->decoder.decoder)(insn, ai); } case DECODE_TYPE_SIMULATE: { struct decode_simulate *d = (struct decode_simulate *)h; ai->insn_handler = d->handler.handler; return INSN_GOOD_NO_SLOT; } case DECODE_TYPE_EMULATE: { struct decode_emulate *d = (struct decode_emulate *)h; ai->insn_handler = d->handler.handler; set_emulated_insn(insn, ai); return INSN_GOOD; } case DECODE_TYPE_OR: matched = true; break; case DECODE_TYPE_REJECT: default: return INSN_REJECTED; } } } /* Return: * INSN_REJECTED If instruction is one not allowed to uprobe, * INSN_GOOD If instruction is supported and uses instruction slot, * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot. * * For instructions we don't want to uprobe (INSN_REJECTED return result): * These are generally ones that modify the processor state making * them "hard" to simulate such as switches processor modes or * make accesses in alternate modes. Any of these could be simulated * if the work was put into it, but low return considering they * should also be very rare. */ enum uprobe_insn arm_uprobe_decode_insn(uprobe_opcode_t insn, struct uprobe_probept_arch_info *ai) { ai->insn_check_cc = uprobe_condition_checks[insn>>28]; return uprobe_decode_insn(insn, ai, uprobe_decode_arm_table); } static int arch_validate_probed_insn(struct uprobe_probept *ppt, struct task_struct *tsk) { uprobe_opcode_t insn = *ppt->insn; if (ppt->vaddr & 0x3) return -EINVAL; arm_uprobe_decode_init(); switch (arm_uprobe_decode_insn(insn, &ppt->arch_info)) { case INSN_REJECTED: return -EINVAL; case INSN_GOOD: ppt->arch_info.insn_fn = (uprobe_insn_fn_t *) ppt->arch_info.insn; flush_icache_range((unsigned long)ppt->arch_info.insn, (unsigned long)ppt->arch_info.insn + sizeof(ppt->arch_info.insn[0]) * MAX_INSN_SIZE); break; case INSN_GOOD_NO_SLOT: break; } return 0; } static int uprobe_emulate_insn(struct pt_regs *regs, struct uprobe_probept *ppt) { if (ppt->arch_info.insn_handler) { regs->ARM_pc += 4; ppt->arch_info.insn_handler(ppt, regs); return 1; } return 0; }