/* -*- linux-c -*- * uprobe Functions * Copyright (C) 2010 Red Hat Inc. * * This file is part of systemtap, and is free software. You can * redistribute it and/or modify it under the terms of the GNU General * Public License (GPL); either version 2, or (at your option) any * later version. */ #ifndef _UPROBE_COMMON_C_ #define _UPROBE_COMMON_C_ /* NB: Because these utrace callbacks only occur before / after userspace instructions run, there is no concurrency control issue between active uprobe callbacks and these registration / unregistration pieces. We protect the stap_uprobe->spec_index (which also serves as a free/busy flag) value with the outer protective stap_probes_lock spinlock, to protect it against concurrent registration / unregistration. */ static int stap_uprobe_change_plus (struct task_struct *tsk, unsigned long relocation, unsigned long length, const struct stap_uprobe_tf *stf, unsigned long offset, unsigned long vm_flags) { int tfi = (stf - stap_uprobe_finders); int spec_index; /* iterate over stap_uprobe_spec[] that use this same stap_uprobe_tf */ for (spec_index=0; spec_indextfi != tfi)) continue; /* skip probes with an address beyond this map event; should not happen unless a shlib/exec got mmapped in weirdly piecemeal */ if (likely((vm_flags & VM_EXEC) && sups->address >= length)) continue; /* Found a uprobe_spec for this stap_uprobe_tf. Need to lock the stap_uprobes[] array to allocate a free spot, but then we can unlock and do the register_*probe subsequently. */ mutex_lock (& stap_uprobes_lock); for (i=0; ispec_index < 0 || (sups->sdt_sem_offset && vm_flags & VM_WRITE && sup->spec_index == spec_index)) { #if (UPROBES_API_VERSION < 2) /* See PR6829 comment. */ if (sup->spec_index == -1 && sup->up.kdata != NULL) continue; else if (sup->spec_index == -2 && sup->urp.u.kdata != NULL) continue; #endif sup->spec_index = spec_index; slotted_p = 1; break; } } mutex_unlock (& stap_uprobes_lock); #ifdef DEBUG_UPROBES _stp_dbug(__FUNCTION__,__LINE__, "+uprobe spec %d idx %d process %s[%d] addr %p pp %s\n", spec_index, (slotted_p ? i : -1), tsk->comm, tsk->tgid, (void*)(relocation+sups->address), sups->probe->pp); #endif if ((rc = _stp_usermodule_check(tsk, (const char*)stf->pathname, relocation))) return rc; /* Here, slotted_p implies that `i' points to the single stap_uprobes[] element that has been slotted in for registration or unregistration processing. !slotted_p implies that the table was full (registration; MAXUPROBES) or that no matching entry was found (unregistration; should not happen). */ sdt_sem_pid = (sups->return_p ? sup->urp.u.pid : sup->up.pid); if (sups->sdt_sem_offset && (sdt_sem_pid != tsk->tgid || sup->sdt_sem_address == 0)) { /* If the probe is in an ET_EXEC binary, then the sdt_sem_offset already * is a real address. But stap_uprobe_process_found calls us in this * case with relocation=offset=0, so we don't have to worry about it. */ sup->sdt_sem_address = (relocation - offset) + sups->sdt_sem_offset; } /* sdt_sem_offset */ for (pci=0; pci < sups->perf_counters_dim; pci++) { if ((sups->perf_counters)[pci] > -1) _stp_perf_read_init ((sups->perf_counters)[pci], tsk); } if (slotted_p) { struct stap_uprobe *sup = & stap_uprobes[i]; if (sups->return_p) { sup->urp.u.pid = tsk->tgid; sup->urp.u.vaddr = relocation + sups->address; sup->urp.handler = &enter_uretprobe_probe; rc = register_uretprobe (& sup->urp); } else { sup->up.pid = tsk->tgid; sup->up.vaddr = relocation + sups->address; sup->up.handler = &enter_uprobe_probe; rc = register_uprobe (& sup->up); } /* The u*probe failed to register. However, if we got EEXIST, * that means that the u*probe is already there, so just ignore * the error. This could happen if CLONE_THREAD or CLONE_VM was * used. */ if (rc != 0 && rc != -EEXIST) { _stp_warn ("u*probe failed %s[%d] '%s' addr %p rc %d\n", tsk->comm, tsk->tgid, sups->probe->pp, (void*)(relocation + sups->address), rc); /* NB: we need to release this slot, so we need to borrow the mutex temporarily. */ mutex_lock (& stap_uprobes_lock); sup->spec_index = -1; sup->sdt_sem_address = 0; mutex_unlock (& stap_uprobes_lock); } else { handled_p = 1; } } /* NB: handled_p implies slotted_p */ if (unlikely (! handled_p)) { #ifdef STP_TIMING atomic_inc (skipped_count_uprobe_reg()); #endif /* NB: duplicates common_entryfn_epilogue, but then this is not a probe entry fn epilogue. */ if (unlikely (atomic_inc_return (skipped_count()) > MAXSKIPPED)) { if (unlikely (pseudo_atomic_cmpxchg(session_state(), STAP_SESSION_RUNNING, STAP_SESSION_ERROR) == STAP_SESSION_RUNNING)) _stp_error ("Skipped too many probes, check MAXSKIPPED or try again with stap -t for more details."); } } } /* close iteration over stap_uprobe_spec[] */ return 0; /* XXX: or rc? */ } static int stap_uprobe_change_semaphore_plus (struct task_struct *tsk, unsigned long relocation, unsigned long length, const struct stap_uprobe_tf *stf) { int tfi = (stf - stap_uprobe_finders); int spec_index; int rc = 0; struct stap_uprobe *sup; int i; /* We make two passes for semaphores. The first pass, stap_uprobe_change_plus, calculates the address of the semaphore. If the probe is in a .so, we calculate the address when the initial mmap maps the entire solib, e.g. 7f089885a000-7f089885b000 rw-p- libtcl.so A subsequent mmap maps in the writable segment where the semaphore control variable lives, e.g. 7f089850d000-7f0898647000 r-xp- libtcl.so 7f0898647000-7f0898846000 ---p libtcl.so 7f0898846000-7f089885b000 rw-p- libtcl.so The second pass, stap_uprobe_change_semaphore_plus, sets the semaphore. If the probe is in a .so this will be when the writable segment of the .so is mapped in. If the task changes, then recalculate the address. */ for (i=0; ispec_index == -1) continue; if (sup->sdt_sem_address != 0 && !(sup->up.pid == tsk->tgid && sup->sdt_sem_address >= relocation && sup->sdt_sem_address < relocation+length)) continue; if (sup->sdt_sem_address) { unsigned short sdt_semaphore = 0; /* NB: fixed size */ if ((rc = get_user (sdt_semaphore, (unsigned short __user*) sup->sdt_sem_address)) == 0) { sdt_semaphore ++; #ifdef DEBUG_UPROBES { const struct stap_uprobe_spec *sups = &stap_uprobe_specs [sup->spec_index]; _stp_dbug(__FUNCTION__,__LINE__, "+semaphore %#x @ %#lx spec %d idx %d task %d\n", sdt_semaphore, sup->sdt_sem_address, sup->spec_index, i, tsk->tgid); } #endif rc = put_user (sdt_semaphore, (unsigned short __user*) sup->sdt_sem_address); /* XXX: need to analyze possibility of race condition */ } } } return rc; } /* Removing/unmapping a uprobe is simpler than adding one (in the _plus function above). We need not care about stap_uprobe_finders or anything, we just scan through stap_uprobes[] for a live probe within the given address range, and kill it. */ static int stap_uprobe_change_minus (struct task_struct *tsk, unsigned long relocation, unsigned long length, const struct stap_uprobe_tf *stf) { int i; /* NB: it's not an error for us not to find a live uprobe within the given range. We might have received a callback for a part of a shlib that was unmapped and unprobed. */ for (i=0; ispec_index < 0) continue; /* skip free uprobes slot */ sups = (struct stap_uprobe_spec*) & stap_uprobe_specs[sup->spec_index]; mutex_lock (& stap_uprobes_lock); /* PR6829, PR9940: Here we're unregistering for one of two reasons: 1. the process image is going away (or gone) due to exit or exec; or 2. the vma containing the probepoint has been unmapped. In case 1, it's sort of a nop, because uprobes will notice the event and dispose of the probes eventually, if it hasn't already. But by calling unmap_u[ret]probe() ourselves, we free up sup right away. In both cases, we must use unmap_u[ret]probe instead of unregister_u[ret]probe, so uprobes knows not to try to restore the original opcode. */ /* URETPROBE */ if (sups->return_p && sup->urp.u.pid == tsk->tgid && sup->urp.u.vaddr >= relocation && sup->urp.u.vaddr < relocation+length) { /* in range */ #ifdef DEBUG_UPROBES _stp_dbug (__FUNCTION__,__LINE__, "-uretprobe spec %d idx %d process %s[%d] addr %p pp %s\n", sup->spec_index, i, tsk->comm, tsk->tgid, (void*) sup->urp.u.vaddr, sups->probe->pp); #endif #if (UPROBES_API_VERSION >= 2) unmap_uretprobe (& sup->urp); sup->spec_index = -1; sup->sdt_sem_address = 0; #else /* Uprobes lacks unmap_uretprobe. Before reusing sup, we must wait until uprobes turns loose of the uretprobe on its own, as indicated by uretprobe.kdata = NULL. */ sup->spec_index = -2; #endif /* UPROBE */ } else if (!sups->return_p && sup->up.pid == tsk->tgid && sup->up.vaddr >= relocation && sup->up.vaddr < relocation+length) { /* in range */ #ifdef DEBUG_UPROBES _stp_dbug (__FUNCTION__,__LINE__, "-uprobe spec %d idx %d process %s[%d] reloc %p pp %s\n", sup->spec_index, i, tsk->comm, tsk->tgid, (void*) sup->up.vaddr, sups->probe->pp); #endif #if (UPROBES_API_VERSION >= 2) unmap_uprobe (& sup->up); sup->spec_index = -1; sup->sdt_sem_address = 0; #else /* Uprobes lacks unmap_uprobe. Before reusing sup, we must wait until uprobes turns loose of the uprobe on its own, as indicated by uprobe.kdata = NULL. */ sup->spec_index = -1; sup->sdt_sem_address = 0; #endif /* PR10655: we don't need to fidget with the ENABLED semaphore either, as the process is gone, buh-bye, toodaloo, au revoir, see ya later! */ } mutex_unlock (& stap_uprobes_lock); } /* close iteration over stap_uprobes[] */ return 0; /* XXX: or !handled_p */ } /* The task_finder_callback we use for ET_EXEC targets. We used to perform uprobe insertion/removal here, but not any more. (PR10524) */ static int stap_uprobe_process_found (struct stap_task_finder_target *tgt, struct task_struct *tsk, int register_p, int process_p) { const struct stap_uprobe_tf *stf = container_of(tgt, struct stap_uprobe_tf, finder); if (! process_p) return 0; /* ignore threads */ dbug_task_vma(1, "%cproc pid %d stf %p %p path %s\n", register_p?'+':'-', tsk->tgid, tgt, stf, stf->pathname); /* ET_EXEC events are like shlib events, but with 0 relocation bases */ if (register_p) { int rc = stap_uprobe_change_plus (tsk, 0, TASK_SIZE, stf, 0, 0); stap_uprobe_change_semaphore_plus (tsk, 0, TASK_SIZE, stf); return rc; } else return stap_uprobe_change_minus (tsk, 0, TASK_SIZE, stf); } /* The task_finder_mmap_callback */ static int stap_uprobe_mmap_found (struct stap_task_finder_target *tgt, struct task_struct *tsk, char *path, struct dentry *dentry, unsigned long addr, unsigned long length, unsigned long offset, unsigned long vm_flags) { int rc = 0; const struct stap_uprobe_tf *stf = container_of(tgt, struct stap_uprobe_tf, finder); /* 1 - shared libraries' executable segments load from offset 0 * - ld.so convention offset != 0 is now allowed * so stap_uprobe_change_plus can set a semaphore, * i.e. a static extern, in a shared object * 2 - the shared library we're interested in * 3 - mapping should be executable or writable (for semaphore in .so) * NB: or both, on kernels that lack noexec mapping */ if (path == NULL || strcmp (path, stf->pathname)) return 0; /* Check non-writable, executable sections for probes. */ if ((vm_flags & VM_EXEC) && !(vm_flags & VM_WRITE)) { dbug_task_vma (1, "+mmap X pid %d path %s addr %p length %u offset %p stf %p %p path %s\n", tsk->tgid, path, (void *) addr, (unsigned)length, (void*) offset, tgt, stf, stf->pathname); rc = stap_uprobe_change_plus (tsk, addr, length, stf, offset, vm_flags); } /* Check writable sections for semaphores. * NB: They may have also been executable for the check above, if we're * running a kernel that lacks noexec mappings. So long as there's * no error (rc == 0), we need to look for semaphores too. */ if ((rc == 0) && (vm_flags & VM_WRITE)) { dbug_task_vma (1, "+mmap W pid %d path %s addr %p length %u offset %p stf %p %p path %s\n", tsk->tgid, path, (void *) addr, (unsigned)length, (void*) offset, tgt, stf, stf->pathname); rc = stap_uprobe_change_semaphore_plus (tsk, addr, length, stf); } return rc; } /* The task_finder_munmap_callback */ static int stap_uprobe_munmap_found (struct stap_task_finder_target *tgt, struct task_struct *tsk, unsigned long addr, unsigned long length) { const struct stap_uprobe_tf *stf = container_of(tgt, struct stap_uprobe_tf, finder); dbug_task_vma (1, "-mmap pid %d addr %p length %lu stf %p %p path %s\n", tsk->tgid, (void *) addr, length, tgt, stf, stf->pathname); return stap_uprobe_change_minus (tsk, addr, length, stf); } /* The task_finder_callback we use for ET_DYN targets. This just forces an unmap of everything as the process exits. (PR11151) */ static int stap_uprobe_process_munmap (struct stap_task_finder_target *tgt, struct task_struct *tsk, int register_p, int process_p) { const struct stap_uprobe_tf *stf = container_of(tgt, struct stap_uprobe_tf, finder); if (! process_p) return 0; /* ignore threads */ dbug_task_vma (1, "%cproc pid %d stf %p %p path %s\n", register_p?'+':'-', tsk->tgid, tgt, stf, stf->pathname); /* Covering 0->TASK_SIZE means "unmap everything" */ if (!register_p) return stap_uprobe_change_minus (tsk, 0, TASK_SIZE, stf); return 0; } #endif /* _UPROBE_COMMON_C_ */