// The template and inlines for the -*- C++ -*- internal _Meta class.
// Copyright (C) 1997-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/** @file bits/valarray_before.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{valarray}
*/
// Written by Gabriel Dos Reis
#ifndef _VALARRAY_BEFORE_H
#define _VALARRAY_BEFORE_H 1
#pragma GCC system_header
#include
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
//
// Implementing a loosened valarray return value is tricky.
// First we need to meet 26.3.1/3: we should not add more than
// two levels of template nesting. Therefore we resort to template
// template to "flatten" loosened return value types.
// At some point we use partial specialization to remove one level
// template nesting due to _Expr<>
//
// This class is NOT defined. It doesn't need to.
template class _Constant;
// Implementations of unary functions applied to valarray<>s.
// I use hard-coded object functions here instead of a generic
// approach like pointers to function:
// 1) correctness: some functions take references, others values.
// we can't deduce the correct type afterwards.
// 2) efficiency -- object functions can be easily inlined
// 3) be Koenig-lookup-friendly
struct _Abs
{
template
_Tp operator()(const _Tp& __t) const
{ return abs(__t); }
};
struct _Cos
{
template
_Tp operator()(const _Tp& __t) const
{ return cos(__t); }
};
struct _Acos
{
template
_Tp operator()(const _Tp& __t) const
{ return acos(__t); }
};
struct _Cosh
{
template
_Tp operator()(const _Tp& __t) const
{ return cosh(__t); }
};
struct _Sin
{
template
_Tp operator()(const _Tp& __t) const
{ return sin(__t); }
};
struct _Asin
{
template
_Tp operator()(const _Tp& __t) const
{ return asin(__t); }
};
struct _Sinh
{
template
_Tp operator()(const _Tp& __t) const
{ return sinh(__t); }
};
struct _Tan
{
template
_Tp operator()(const _Tp& __t) const
{ return tan(__t); }
};
struct _Atan
{
template
_Tp operator()(const _Tp& __t) const
{ return atan(__t); }
};
struct _Tanh
{
template
_Tp operator()(const _Tp& __t) const
{ return tanh(__t); }
};
struct _Exp
{
template
_Tp operator()(const _Tp& __t) const
{ return exp(__t); }
};
struct _Log
{
template
_Tp operator()(const _Tp& __t) const
{ return log(__t); }
};
struct _Log10
{
template
_Tp operator()(const _Tp& __t) const
{ return log10(__t); }
};
struct _Sqrt
{
template
_Tp operator()(const _Tp& __t) const
{ return sqrt(__t); }
};
// In the past, we used to tailor operator applications semantics
// to the specialization of standard function objects (i.e. plus<>, etc.)
// That is incorrect. Therefore we provide our own surrogates.
struct __unary_plus
{
template
_Tp operator()(const _Tp& __t) const
{ return +__t; }
};
struct __negate
{
template
_Tp operator()(const _Tp& __t) const
{ return -__t; }
};
struct __bitwise_not
{
template
_Tp operator()(const _Tp& __t) const
{ return ~__t; }
};
struct __plus
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x + __y; }
};
struct __minus
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x - __y; }
};
struct __multiplies
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x * __y; }
};
struct __divides
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x / __y; }
};
struct __modulus
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x % __y; }
};
struct __bitwise_xor
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x ^ __y; }
};
struct __bitwise_and
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x & __y; }
};
struct __bitwise_or
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x | __y; }
};
struct __shift_left
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x << __y; }
};
struct __shift_right
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return __x >> __y; }
};
struct __logical_and
{
template
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x && __y; }
};
struct __logical_or
{
template
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x || __y; }
};
struct __logical_not
{
template
bool operator()(const _Tp& __x) const
{ return !__x; }
};
struct __equal_to
{
template
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x == __y; }
};
struct __not_equal_to
{
template
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x != __y; }
};
struct __less
{
template
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x < __y; }
};
struct __greater
{
template
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x > __y; }
};
struct __less_equal
{
template
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x <= __y; }
};
struct __greater_equal
{
template
bool operator()(const _Tp& __x, const _Tp& __y) const
{ return __x >= __y; }
};
// The few binary functions we miss.
struct _Atan2
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return atan2(__x, __y); }
};
struct _Pow
{
template
_Tp operator()(const _Tp& __x, const _Tp& __y) const
{ return pow(__x, __y); }
};
// We need these bits in order to recover the return type of
// some functions/operators now that we're no longer using
// function templates.
template
struct __fun
{
typedef _Tp result_type;
};
// several specializations for relational operators.
template
struct __fun<__logical_not, _Tp>
{
typedef bool result_type;
};
template
struct __fun<__logical_and, _Tp>
{
typedef bool result_type;
};
template
struct __fun<__logical_or, _Tp>
{
typedef bool result_type;
};
template
struct __fun<__less, _Tp>
{
typedef bool result_type;
};
template
struct __fun<__greater, _Tp>
{
typedef bool result_type;
};
template
struct __fun<__less_equal, _Tp>
{
typedef bool result_type;
};
template
struct __fun<__greater_equal, _Tp>
{
typedef bool result_type;
};
template
struct __fun<__equal_to, _Tp>
{
typedef bool result_type;
};
template
struct __fun<__not_equal_to, _Tp>
{
typedef bool result_type;
};
//
// Apply function taking a value/const reference closure
//
template
class _FunBase
{
public:
typedef typename _Dom::value_type value_type;
_FunBase(const _Dom& __e, value_type __f(_Arg))
: _M_expr(__e), _M_func(__f) {}
value_type operator[](size_t __i) const
{ return _M_func (_M_expr[__i]); }
size_t size() const { return _M_expr.size ();}
private:
const _Dom& _M_expr;
value_type (*_M_func)(_Arg);
};
template
struct _ValFunClos<_Expr,_Dom> : _FunBase<_Dom, typename _Dom::value_type>
{
typedef _FunBase<_Dom, typename _Dom::value_type> _Base;
typedef typename _Base::value_type value_type;
typedef value_type _Tp;
_ValFunClos(const _Dom& __e, _Tp __f(_Tp)) : _Base(__e, __f) {}
};
template
struct _ValFunClos<_ValArray,_Tp> : _FunBase, _Tp>
{
typedef _FunBase, _Tp> _Base;
typedef _Tp value_type;
_ValFunClos(const valarray<_Tp>& __v, _Tp __f(_Tp)) : _Base(__v, __f) {}
};
template
struct _RefFunClos<_Expr, _Dom>
: _FunBase<_Dom, const typename _Dom::value_type&>
{
typedef _FunBase<_Dom, const typename _Dom::value_type&> _Base;
typedef typename _Base::value_type value_type;
typedef value_type _Tp;
_RefFunClos(const _Dom& __e, _Tp __f(const _Tp&))
: _Base(__e, __f) {}
};
template
struct _RefFunClos<_ValArray, _Tp>
: _FunBase, const _Tp&>
{
typedef _FunBase, const _Tp&> _Base;
typedef _Tp value_type;
_RefFunClos(const valarray<_Tp>& __v, _Tp __f(const _Tp&))
: _Base(__v, __f) {}
};
//
// Unary expression closure.
//
template
class _UnBase
{
public:
typedef typename _Arg::value_type _Vt;
typedef typename __fun<_Oper, _Vt>::result_type value_type;
_UnBase(const _Arg& __e) : _M_expr(__e) {}
value_type operator[](size_t __i) const
{ return _Oper()(_M_expr[__i]); }
size_t size() const { return _M_expr.size(); }
private:
const _Arg& _M_expr;
};
template
struct _UnClos<_Oper, _Expr, _Dom>
: _UnBase<_Oper, _Dom>
{
typedef _Dom _Arg;
typedef _UnBase<_Oper, _Dom> _Base;
typedef typename _Base::value_type value_type;
_UnClos(const _Arg& __e) : _Base(__e) {}
};
template
struct _UnClos<_Oper, _ValArray, _Tp>
: _UnBase<_Oper, valarray<_Tp> >
{
typedef valarray<_Tp> _Arg;
typedef _UnBase<_Oper, valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_UnClos(const _Arg& __e) : _Base(__e) {}
};
//
// Binary expression closure.
//
template
class _BinBase
{
public:
typedef typename _FirstArg::value_type _Vt;
typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase(const _FirstArg& __e1, const _SecondArg& __e2)
: _M_expr1(__e1), _M_expr2(__e2) {}
value_type operator[](size_t __i) const
{ return _Oper()(_M_expr1[__i], _M_expr2[__i]); }
size_t size() const { return _M_expr1.size(); }
private:
const _FirstArg& _M_expr1;
const _SecondArg& _M_expr2;
};
template
class _BinBase2
{
public:
typedef typename _Clos::value_type _Vt;
typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase2(const _Clos& __e, const _Vt& __t)
: _M_expr1(__e), _M_expr2(__t) {}
value_type operator[](size_t __i) const
{ return _Oper()(_M_expr1[__i], _M_expr2); }
size_t size() const { return _M_expr1.size(); }
private:
const _Clos& _M_expr1;
const _Vt& _M_expr2;
};
template
class _BinBase1
{
public:
typedef typename _Clos::value_type _Vt;
typedef typename __fun<_Oper, _Vt>::result_type value_type;
_BinBase1(const _Vt& __t, const _Clos& __e)
: _M_expr1(__t), _M_expr2(__e) {}
value_type operator[](size_t __i) const
{ return _Oper()(_M_expr1, _M_expr2[__i]); }
size_t size() const { return _M_expr2.size(); }
private:
const _Vt& _M_expr1;
const _Clos& _M_expr2;
};
template
struct _BinClos<_Oper, _Expr, _Expr, _Dom1, _Dom2>
: _BinBase<_Oper, _Dom1, _Dom2>
{
typedef _BinBase<_Oper, _Dom1, _Dom2> _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Dom1& __e1, const _Dom2& __e2) : _Base(__e1, __e2) {}
};
template
struct _BinClos<_Oper,_ValArray, _ValArray, _Tp, _Tp>
: _BinBase<_Oper, valarray<_Tp>, valarray<_Tp> >
{
typedef _BinBase<_Oper, valarray<_Tp>, valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_BinClos(const valarray<_Tp>& __v, const valarray<_Tp>& __w)
: _Base(__v, __w) {}
};
template
struct _BinClos<_Oper, _Expr, _ValArray, _Dom, typename _Dom::value_type>
: _BinBase<_Oper, _Dom, valarray >
{
typedef typename _Dom::value_type _Tp;
typedef _BinBase<_Oper,_Dom,valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Dom& __e1, const valarray<_Tp>& __e2)
: _Base(__e1, __e2) {}
};
template
struct _BinClos<_Oper, _ValArray, _Expr, typename _Dom::value_type, _Dom>
: _BinBase<_Oper, valarray,_Dom>
{
typedef typename _Dom::value_type _Tp;
typedef _BinBase<_Oper, valarray<_Tp>, _Dom> _Base;
typedef typename _Base::value_type value_type;
_BinClos(const valarray<_Tp>& __e1, const _Dom& __e2)
: _Base(__e1, __e2) {}
};
template
struct _BinClos<_Oper, _Expr, _Constant, _Dom, typename _Dom::value_type>
: _BinBase2<_Oper, _Dom>
{
typedef typename _Dom::value_type _Tp;
typedef _BinBase2<_Oper,_Dom> _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Dom& __e1, const _Tp& __e2) : _Base(__e1, __e2) {}
};
template
struct _BinClos<_Oper, _Constant, _Expr, typename _Dom::value_type, _Dom>
: _BinBase1<_Oper, _Dom>
{
typedef typename _Dom::value_type _Tp;
typedef _BinBase1<_Oper, _Dom> _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Tp& __e1, const _Dom& __e2) : _Base(__e1, __e2) {}
};
template
struct _BinClos<_Oper, _ValArray, _Constant, _Tp, _Tp>
: _BinBase2<_Oper, valarray<_Tp> >
{
typedef _BinBase2<_Oper,valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_BinClos(const valarray<_Tp>& __v, const _Tp& __t) : _Base(__v, __t) {}
};
template
struct _BinClos<_Oper, _Constant, _ValArray, _Tp, _Tp>
: _BinBase1<_Oper, valarray<_Tp> >
{
typedef _BinBase1<_Oper, valarray<_Tp> > _Base;
typedef typename _Base::value_type value_type;
_BinClos(const _Tp& __t, const valarray<_Tp>& __v) : _Base(__t, __v) {}
};
//
// slice_array closure.
//
template
class _SBase
{
public:
typedef typename _Dom::value_type value_type;
_SBase (const _Dom& __e, const slice& __s)
: _M_expr (__e), _M_slice (__s) {}
value_type
operator[] (size_t __i) const
{ return _M_expr[_M_slice.start () + __i * _M_slice.stride ()]; }
size_t
size() const
{ return _M_slice.size (); }
private:
const _Dom& _M_expr;
const slice& _M_slice;
};
template
class _SBase<_Array<_Tp> >
{
public:
typedef _Tp value_type;
_SBase (_Array<_Tp> __a, const slice& __s)
: _M_array (__a._M_data+__s.start()), _M_size (__s.size()),
_M_stride (__s.stride()) {}
value_type
operator[] (size_t __i) const
{ return _M_array._M_data[__i * _M_stride]; }
size_t
size() const
{ return _M_size; }
private:
const _Array<_Tp> _M_array;
const size_t _M_size;
const size_t _M_stride;
};
template
struct _SClos<_Expr, _Dom>
: _SBase<_Dom>
{
typedef _SBase<_Dom> _Base;
typedef typename _Base::value_type value_type;
_SClos (const _Dom& __e, const slice& __s) : _Base (__e, __s) {}
};
template
struct _SClos<_ValArray, _Tp>
: _SBase<_Array<_Tp> >
{
typedef _SBase<_Array<_Tp> > _Base;
typedef _Tp value_type;
_SClos (_Array<_Tp> __a, const slice& __s) : _Base (__a, __s) {}
};
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace
#endif /* _CPP_VALARRAY_BEFORE_H */