// unordered_set implementation -*- C++ -*-
// Copyright (C) 2010-2013 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
// .
/** @file bits/unordered_set.h
* This is an internal header file, included by other library headers.
* Do not attempt to use it directly. @headername{unordered_set}
*/
#ifndef _UNORDERED_SET_H
#define _UNORDERED_SET_H
namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER
/// Base types for unordered_set.
template
using __uset_traits = __detail::_Hashtable_traits<_Cache, true, true>;
template,
typename _Pred = std::equal_to<_Value>,
typename _Alloc = std::allocator<_Value>,
typename _Tr = __uset_traits<__cache_default<_Value, _Hash>::value>>
using __uset_hashtable = _Hashtable<_Value, _Value, _Alloc,
__detail::_Identity, _Pred, _Hash,
__detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy, _Tr>;
/// Base types for unordered_multiset.
template
using __umset_traits = __detail::_Hashtable_traits<_Cache, true, false>;
template,
typename _Pred = std::equal_to<_Value>,
typename _Alloc = std::allocator<_Value>,
typename _Tr = __umset_traits<__cache_default<_Value, _Hash>::value>>
using __umset_hashtable = _Hashtable<_Value, _Value, _Alloc,
__detail::_Identity,
_Pred, _Hash,
__detail::_Mod_range_hashing,
__detail::_Default_ranged_hash,
__detail::_Prime_rehash_policy, _Tr>;
/**
* @brief A standard container composed of unique keys (containing
* at most one of each key value) in which the elements' keys are
* the elements themselves.
*
* @ingroup unordered_associative_containers
*
* @tparam _Value Type of key objects.
* @tparam _Hash Hashing function object type, defaults to hash<_Value>.
* @tparam _Pred Predicate function object type, defaults to
* equal_to<_Value>.
*
* @tparam _Alloc Allocator type, defaults to allocator<_Key>.
*
* Meets the requirements of a container, and
* unordered associative container
*
* Base is _Hashtable, dispatched at compile time via template
* alias __uset_hashtable.
*/
template,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value> >
class unordered_set : __check_copy_constructible<_Alloc>
{
typedef __uset_hashtable<_Value, _Hash, _Pred, _Alloc> _Hashtable;
_Hashtable _M_h;
public:
// typedefs:
//@{
/// Public typedefs.
typedef typename _Hashtable::key_type key_type;
typedef typename _Hashtable::value_type value_type;
typedef typename _Hashtable::hasher hasher;
typedef typename _Hashtable::key_equal key_equal;
typedef typename _Hashtable::allocator_type allocator_type;
//@}
//@{
/// Iterator-related typedefs.
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef typename _Hashtable::iterator iterator;
typedef typename _Hashtable::const_iterator const_iterator;
typedef typename _Hashtable::local_iterator local_iterator;
typedef typename _Hashtable::const_local_iterator const_local_iterator;
typedef typename _Hashtable::size_type size_type;
typedef typename _Hashtable::difference_type difference_type;
//@}
// construct/destroy/copy
/**
* @brief Default constructor creates no elements.
* @param __n Initial number of buckets.
* @param __hf A hash functor.
* @param __eql A key equality functor.
* @param __a An allocator object.
*/
explicit
unordered_set(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _M_h(__n, __hf, __eql, __a)
{ }
/**
* @brief Builds an %unordered_set from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __n Minimal initial number of buckets.
* @param __hf A hash functor.
* @param __eql A key equality functor.
* @param __a An allocator object.
*
* Create an %unordered_set consisting of copies of the elements from
* [__first,__last). This is linear in N (where N is
* distance(__first,__last)).
*/
template
unordered_set(_InputIterator __f, _InputIterator __l,
size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _M_h(__f, __l, __n, __hf, __eql, __a)
{ }
/// Copy constructor.
unordered_set(const unordered_set&) = default;
/// Move constructor.
unordered_set(unordered_set&&) = default;
/**
* @brief Builds an %unordered_set from an initializer_list.
* @param __l An initializer_list.
* @param __n Minimal initial number of buckets.
* @param __hf A hash functor.
* @param __eql A key equality functor.
* @param __a An allocator object.
*
* Create an %unordered_set consisting of copies of the elements in the
* list. This is linear in N (where N is @a __l.size()).
*/
unordered_set(initializer_list __l,
size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _M_h(__l, __n, __hf, __eql, __a)
{ }
/// Copy assignment operator.
unordered_set&
operator=(const unordered_set&) = default;
/// Move assignment operator.
unordered_set&
operator=(unordered_set&&) = default;
/**
* @brief %Unordered_set list assignment operator.
* @param __l An initializer_list.
*
* This function fills an %unordered_set with copies of the elements in
* the initializer list @a __l.
*
* Note that the assignment completely changes the %unordered_set and
* that the resulting %unordered_set's size is the same as the number
* of elements assigned. Old data may be lost.
*/
unordered_set&
operator=(initializer_list __l)
{
_M_h = __l;
return *this;
}
/// Returns the allocator object with which the %unordered_set was
/// constructed.
allocator_type
get_allocator() const noexcept
{ return _M_h.get_allocator(); }
// size and capacity:
/// Returns true if the %unordered_set is empty.
bool
empty() const noexcept
{ return _M_h.empty(); }
/// Returns the size of the %unordered_set.
size_type
size() const noexcept
{ return _M_h.size(); }
/// Returns the maximum size of the %unordered_set.
size_type
max_size() const noexcept
{ return _M_h.max_size(); }
// iterators.
//@{
/**
* Returns a read-only (constant) iterator that points to the first
* element in the %unordered_set.
*/
iterator
begin() noexcept
{ return _M_h.begin(); }
const_iterator
begin() const noexcept
{ return _M_h.begin(); }
//@}
//@{
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %unordered_set.
*/
iterator
end() noexcept
{ return _M_h.end(); }
const_iterator
end() const noexcept
{ return _M_h.end(); }
//@}
/**
* Returns a read-only (constant) iterator that points to the first
* element in the %unordered_set.
*/
const_iterator
cbegin() const noexcept
{ return _M_h.begin(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %unordered_set.
*/
const_iterator
cend() const noexcept
{ return _M_h.end(); }
// modifiers.
/**
* @brief Attempts to build and insert an element into the
* %unordered_set.
* @param __args Arguments used to generate an element.
* @return A pair, of which the first element is an iterator that points
* to the possibly inserted element, and the second is a bool
* that is true if the element was actually inserted.
*
* This function attempts to build and insert an element into the
* %unordered_set. An %unordered_set relies on unique keys and thus an
* element is only inserted if it is not already present in the
* %unordered_set.
*
* Insertion requires amortized constant time.
*/
template
std::pair
emplace(_Args&&... __args)
{ return _M_h.emplace(std::forward<_Args>(__args)...); }
/**
* @brief Attempts to insert an element into the %unordered_set.
* @param __pos An iterator that serves as a hint as to where the
* element should be inserted.
* @param __args Arguments used to generate the element to be
* inserted.
* @return An iterator that points to the element with key equivalent to
* the one generated from @a __args (may or may not be the
* element itself).
*
* This function is not concerned about whether the insertion took place,
* and thus does not return a boolean like the single-argument emplace()
* does. Note that the first parameter is only a hint and can
* potentially improve the performance of the insertion process. A bad
* hint would cause no gains in efficiency.
*
* For more on @a hinting, see:
* http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
*
* Insertion requires amortized constant time.
*/
template
iterator
emplace_hint(const_iterator __pos, _Args&&... __args)
{ return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }
//@{
/**
* @brief Attempts to insert an element into the %unordered_set.
* @param __x Element to be inserted.
* @return A pair, of which the first element is an iterator that points
* to the possibly inserted element, and the second is a bool
* that is true if the element was actually inserted.
*
* This function attempts to insert an element into the %unordered_set.
* An %unordered_set relies on unique keys and thus an element is only
* inserted if it is not already present in the %unordered_set.
*
* Insertion requires amortized constant time.
*/
std::pair
insert(const value_type& __x)
{ return _M_h.insert(__x); }
std::pair
insert(value_type&& __x)
{ return _M_h.insert(std::move(__x)); }
//@}
//@{
/**
* @brief Attempts to insert an element into the %unordered_set.
* @param __hint An iterator that serves as a hint as to where the
* element should be inserted.
* @param __x Element to be inserted.
* @return An iterator that points to the element with key of
* @a __x (may or may not be the element passed in).
*
* This function is not concerned about whether the insertion took place,
* and thus does not return a boolean like the single-argument insert()
* does. Note that the first parameter is only a hint and can
* potentially improve the performance of the insertion process. A bad
* hint would cause no gains in efficiency.
*
* For more on @a hinting, see:
* http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
*
* Insertion requires amortized constant.
*/
iterator
insert(const_iterator __hint, const value_type& __x)
{ return _M_h.insert(__hint, __x); }
iterator
insert(const_iterator __hint, value_type&& __x)
{ return _M_h.insert(__hint, std::move(__x)); }
//@}
/**
* @brief A template function that attempts to insert a range of
* elements.
* @param __first Iterator pointing to the start of the range to be
* inserted.
* @param __last Iterator pointing to the end of the range.
*
* Complexity similar to that of the range constructor.
*/
template
void
insert(_InputIterator __first, _InputIterator __last)
{ _M_h.insert(__first, __last); }
/**
* @brief Attempts to insert a list of elements into the %unordered_set.
* @param __l A std::initializer_list of elements
* to be inserted.
*
* Complexity similar to that of the range constructor.
*/
void
insert(initializer_list __l)
{ _M_h.insert(__l); }
//@{
/**
* @brief Erases an element from an %unordered_set.
* @param __position An iterator pointing to the element to be erased.
* @return An iterator pointing to the element immediately following
* @a __position prior to the element being erased. If no such
* element exists, end() is returned.
*
* This function erases an element, pointed to by the given iterator,
* from an %unordered_set. Note that this function only erases the
* element, and that if the element is itself a pointer, the pointed-to
* memory is not touched in any way. Managing the pointer is the user's
* responsibility.
*/
iterator
erase(const_iterator __position)
{ return _M_h.erase(__position); }
// LWG 2059.
iterator
erase(iterator __it)
{ return _M_h.erase(__it); }
//@}
/**
* @brief Erases elements according to the provided key.
* @param __x Key of element to be erased.
* @return The number of elements erased.
*
* This function erases all the elements located by the given key from
* an %unordered_set. For an %unordered_set the result of this function
* can only be 0 (not present) or 1 (present).
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
size_type
erase(const key_type& __x)
{ return _M_h.erase(__x); }
/**
* @brief Erases a [__first,__last) range of elements from an
* %unordered_set.
* @param __first Iterator pointing to the start of the range to be
* erased.
* @param __last Iterator pointing to the end of the range to
* be erased.
* @return The iterator @a __last.
*
* This function erases a sequence of elements from an %unordered_set.
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
iterator
erase(const_iterator __first, const_iterator __last)
{ return _M_h.erase(__first, __last); }
/**
* Erases all elements in an %unordered_set. Note that this function only
* erases the elements, and that if the elements themselves are pointers,
* the pointed-to memory is not touched in any way. Managing the pointer
* is the user's responsibility.
*/
void
clear() noexcept
{ _M_h.clear(); }
/**
* @brief Swaps data with another %unordered_set.
* @param __x An %unordered_set of the same element and allocator
* types.
*
* This exchanges the elements between two sets in constant time.
* Note that the global std::swap() function is specialized such that
* std::swap(s1,s2) will feed to this function.
*/
void
swap(unordered_set& __x)
{ _M_h.swap(__x._M_h); }
// observers.
/// Returns the hash functor object with which the %unordered_set was
/// constructed.
hasher
hash_function() const
{ return _M_h.hash_function(); }
/// Returns the key comparison object with which the %unordered_set was
/// constructed.
key_equal
key_eq() const
{ return _M_h.key_eq(); }
// lookup.
//@{
/**
* @brief Tries to locate an element in an %unordered_set.
* @param __x Element to be located.
* @return Iterator pointing to sought-after element, or end() if not
* found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
* pointing to the sought after element. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator
find(const key_type& __x)
{ return _M_h.find(__x); }
const_iterator
find(const key_type& __x) const
{ return _M_h.find(__x); }
//@}
/**
* @brief Finds the number of elements.
* @param __x Element to located.
* @return Number of elements with specified key.
*
* This function only makes sense for unordered_multisets; for
* unordered_set the result will either be 0 (not present) or 1
* (present).
*/
size_type
count(const key_type& __x) const
{ return _M_h.count(__x); }
//@{
/**
* @brief Finds a subsequence matching given key.
* @param __x Key to be located.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*
* This function probably only makes sense for multisets.
*/
std::pair
equal_range(const key_type& __x)
{ return _M_h.equal_range(__x); }
std::pair
equal_range(const key_type& __x) const
{ return _M_h.equal_range(__x); }
//@}
// bucket interface.
/// Returns the number of buckets of the %unordered_set.
size_type
bucket_count() const noexcept
{ return _M_h.bucket_count(); }
/// Returns the maximum number of buckets of the %unordered_set.
size_type
max_bucket_count() const noexcept
{ return _M_h.max_bucket_count(); }
/*
* @brief Returns the number of elements in a given bucket.
* @param __n A bucket index.
* @return The number of elements in the bucket.
*/
size_type
bucket_size(size_type __n) const
{ return _M_h.bucket_size(__n); }
/*
* @brief Returns the bucket index of a given element.
* @param __key A key instance.
* @return The key bucket index.
*/
size_type
bucket(const key_type& __key) const
{ return _M_h.bucket(__key); }
//@{
/**
* @brief Returns a read-only (constant) iterator pointing to the first
* bucket element.
* @param __n The bucket index.
* @return A read-only local iterator.
*/
local_iterator
begin(size_type __n)
{ return _M_h.begin(__n); }
const_local_iterator
begin(size_type __n) const
{ return _M_h.begin(__n); }
const_local_iterator
cbegin(size_type __n) const
{ return _M_h.cbegin(__n); }
//@}
//@{
/**
* @brief Returns a read-only (constant) iterator pointing to one past
* the last bucket elements.
* @param __n The bucket index.
* @return A read-only local iterator.
*/
local_iterator
end(size_type __n)
{ return _M_h.end(__n); }
const_local_iterator
end(size_type __n) const
{ return _M_h.end(__n); }
const_local_iterator
cend(size_type __n) const
{ return _M_h.cend(__n); }
//@}
// hash policy.
/// Returns the average number of elements per bucket.
float
load_factor() const noexcept
{ return _M_h.load_factor(); }
/// Returns a positive number that the %unordered_set tries to keep the
/// load factor less than or equal to.
float
max_load_factor() const noexcept
{ return _M_h.max_load_factor(); }
/**
* @brief Change the %unordered_set maximum load factor.
* @param __z The new maximum load factor.
*/
void
max_load_factor(float __z)
{ _M_h.max_load_factor(__z); }
/**
* @brief May rehash the %unordered_set.
* @param __n The new number of buckets.
*
* Rehash will occur only if the new number of buckets respect the
* %unordered_set maximum load factor.
*/
void
rehash(size_type __n)
{ _M_h.rehash(__n); }
/**
* @brief Prepare the %unordered_set for a specified number of
* elements.
* @param __n Number of elements required.
*
* Same as rehash(ceil(n / max_load_factor())).
*/
void
reserve(size_type __n)
{ _M_h.reserve(__n); }
template
friend bool
operator==(const unordered_set<_Value1, _Hash1, _Pred1, _Alloc1>&,
const unordered_set<_Value1, _Hash1, _Pred1, _Alloc1>&);
};
/**
* @brief A standard container composed of equivalent keys
* (possibly containing multiple of each key value) in which the
* elements' keys are the elements themselves.
*
* @ingroup unordered_associative_containers
*
* @tparam _Value Type of key objects.
* @tparam _Hash Hashing function object type, defaults to hash<_Value>.
* @tparam _Pred Predicate function object type, defaults
* to equal_to<_Value>.
* @tparam _Alloc Allocator type, defaults to allocator<_Key>.
*
* Meets the requirements of a container, and
* unordered associative container
*
* Base is _Hashtable, dispatched at compile time via template
* alias __umset_hashtable.
*/
template,
class _Pred = std::equal_to<_Value>,
class _Alloc = std::allocator<_Value> >
class unordered_multiset : __check_copy_constructible<_Alloc>
{
typedef __umset_hashtable<_Value, _Hash, _Pred, _Alloc> _Hashtable;
_Hashtable _M_h;
public:
// typedefs:
//@{
/// Public typedefs.
typedef typename _Hashtable::key_type key_type;
typedef typename _Hashtable::value_type value_type;
typedef typename _Hashtable::hasher hasher;
typedef typename _Hashtable::key_equal key_equal;
typedef typename _Hashtable::allocator_type allocator_type;
//@}
//@{
/// Iterator-related typedefs.
typedef typename allocator_type::pointer pointer;
typedef typename allocator_type::const_pointer const_pointer;
typedef typename allocator_type::reference reference;
typedef typename allocator_type::const_reference const_reference;
typedef typename _Hashtable::iterator iterator;
typedef typename _Hashtable::const_iterator const_iterator;
typedef typename _Hashtable::local_iterator local_iterator;
typedef typename _Hashtable::const_local_iterator const_local_iterator;
typedef typename _Hashtable::size_type size_type;
typedef typename _Hashtable::difference_type difference_type;
//@}
// construct/destroy/copy
/**
* @brief Default constructor creates no elements.
* @param __n Initial number of buckets.
* @param __hf A hash functor.
* @param __eql A key equality functor.
* @param __a An allocator object.
*/
explicit
unordered_multiset(size_type __n = 10,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _M_h(__n, __hf, __eql, __a)
{ }
/**
* @brief Builds an %unordered_multiset from a range.
* @param __first An input iterator.
* @param __last An input iterator.
* @param __n Minimal initial number of buckets.
* @param __hf A hash functor.
* @param __eql A key equality functor.
* @param __a An allocator object.
*
* Create an %unordered_multiset consisting of copies of the elements
* from [__first,__last). This is linear in N (where N is
* distance(__first,__last)).
*/
template
unordered_multiset(_InputIterator __f, _InputIterator __l,
size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _M_h(__f, __l, __n, __hf, __eql, __a)
{ }
/// Copy constructor.
unordered_multiset(const unordered_multiset&) = default;
/// Move constructor.
unordered_multiset(unordered_multiset&&) = default;
/**
* @brief Builds an %unordered_multiset from an initializer_list.
* @param __l An initializer_list.
* @param __n Minimal initial number of buckets.
* @param __hf A hash functor.
* @param __eql A key equality functor.
* @param __a An allocator object.
*
* Create an %unordered_multiset consisting of copies of the elements in
* the list. This is linear in N (where N is @a __l.size()).
*/
unordered_multiset(initializer_list __l,
size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _M_h(__l, __n, __hf, __eql, __a)
{ }
/// Copy assignment operator.
unordered_multiset&
operator=(const unordered_multiset&) = default;
/// Move assignment operator.
unordered_multiset&
operator=(unordered_multiset&& __x) = default;
/**
* @brief %Unordered_multiset list assignment operator.
* @param __l An initializer_list.
*
* This function fills an %unordered_multiset with copies of the elements
* in the initializer list @a __l.
*
* Note that the assignment completely changes the %unordered_multiset
* and that the resulting %unordered_set's size is the same as the number
* of elements assigned. Old data may be lost.
*/
unordered_multiset&
operator=(initializer_list __l)
{
_M_h = __l;
return *this;
}
/// Returns the allocator object with which the %unordered_multiset was
/// constructed.
allocator_type
get_allocator() const noexcept
{ return _M_h.get_allocator(); }
// size and capacity:
/// Returns true if the %unordered_multiset is empty.
bool
empty() const noexcept
{ return _M_h.empty(); }
/// Returns the size of the %unordered_multiset.
size_type
size() const noexcept
{ return _M_h.size(); }
/// Returns the maximum size of the %unordered_multiset.
size_type
max_size() const noexcept
{ return _M_h.max_size(); }
// iterators.
//@{
/**
* Returns a read-only (constant) iterator that points to the first
* element in the %unordered_multiset.
*/
iterator
begin() noexcept
{ return _M_h.begin(); }
const_iterator
begin() const noexcept
{ return _M_h.begin(); }
//@}
//@{
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %unordered_multiset.
*/
iterator
end() noexcept
{ return _M_h.end(); }
const_iterator
end() const noexcept
{ return _M_h.end(); }
//@}
/**
* Returns a read-only (constant) iterator that points to the first
* element in the %unordered_multiset.
*/
const_iterator
cbegin() const noexcept
{ return _M_h.begin(); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %unordered_multiset.
*/
const_iterator
cend() const noexcept
{ return _M_h.end(); }
// modifiers.
/**
* @brief Builds and insert an element into the %unordered_multiset.
* @param __args Arguments used to generate an element.
* @return An iterator that points to the inserted element.
*
* Insertion requires amortized constant time.
*/
template
iterator
emplace(_Args&&... __args)
{ return _M_h.emplace(std::forward<_Args>(__args)...); }
/**
* @brief Inserts an element into the %unordered_multiset.
* @param __pos An iterator that serves as a hint as to where the
* element should be inserted.
* @param __args Arguments used to generate the element to be
* inserted.
* @return An iterator that points to the inserted element.
*
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* For more on @a hinting, see:
* http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
*
* Insertion requires amortized constant time.
*/
template
iterator
emplace_hint(const_iterator __pos, _Args&&... __args)
{ return _M_h.emplace_hint(__pos, std::forward<_Args>(__args)...); }
//@{
/**
* @brief Inserts an element into the %unordered_multiset.
* @param __x Element to be inserted.
* @return An iterator that points to the inserted element.
*
* Insertion requires amortized constant time.
*/
iterator
insert(const value_type& __x)
{ return _M_h.insert(__x); }
iterator
insert(value_type&& __x)
{ return _M_h.insert(std::move(__x)); }
//@}
//@{
/**
* @brief Inserts an element into the %unordered_multiset.
* @param __hint An iterator that serves as a hint as to where the
* element should be inserted.
* @param __x Element to be inserted.
* @return An iterator that points to the inserted element.
*
* Note that the first parameter is only a hint and can potentially
* improve the performance of the insertion process. A bad hint would
* cause no gains in efficiency.
*
* For more on @a hinting, see:
* http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt07ch17.html
*
* Insertion requires amortized constant.
*/
iterator
insert(const_iterator __hint, const value_type& __x)
{ return _M_h.insert(__hint, __x); }
iterator
insert(const_iterator __hint, value_type&& __x)
{ return _M_h.insert(__hint, std::move(__x)); }
//@}
/**
* @brief A template function that inserts a range of elements.
* @param __first Iterator pointing to the start of the range to be
* inserted.
* @param __last Iterator pointing to the end of the range.
*
* Complexity similar to that of the range constructor.
*/
template
void
insert(_InputIterator __first, _InputIterator __last)
{ _M_h.insert(__first, __last); }
/**
* @brief Inserts a list of elements into the %unordered_multiset.
* @param __l A std::initializer_list of elements to be
* inserted.
*
* Complexity similar to that of the range constructor.
*/
void
insert(initializer_list __l)
{ _M_h.insert(__l); }
//@{
/**
* @brief Erases an element from an %unordered_multiset.
* @param __position An iterator pointing to the element to be erased.
* @return An iterator pointing to the element immediately following
* @a __position prior to the element being erased. If no such
* element exists, end() is returned.
*
* This function erases an element, pointed to by the given iterator,
* from an %unordered_multiset.
*
* Note that this function only erases the element, and that if the
* element is itself a pointer, the pointed-to memory is not touched in
* any way. Managing the pointer is the user's responsibility.
*/
iterator
erase(const_iterator __position)
{ return _M_h.erase(__position); }
// LWG 2059.
iterator
erase(iterator __it)
{ return _M_h.erase(__it); }
//@}
/**
* @brief Erases elements according to the provided key.
* @param __x Key of element to be erased.
* @return The number of elements erased.
*
* This function erases all the elements located by the given key from
* an %unordered_multiset.
*
* Note that this function only erases the element, and that if the
* element is itself a pointer, the pointed-to memory is not touched in
* any way. Managing the pointer is the user's responsibility.
*/
size_type
erase(const key_type& __x)
{ return _M_h.erase(__x); }
/**
* @brief Erases a [__first,__last) range of elements from an
* %unordered_multiset.
* @param __first Iterator pointing to the start of the range to be
* erased.
* @param __last Iterator pointing to the end of the range to
* be erased.
* @return The iterator @a __last.
*
* This function erases a sequence of elements from an
* %unordered_multiset.
*
* Note that this function only erases the element, and that if
* the element is itself a pointer, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
iterator
erase(const_iterator __first, const_iterator __last)
{ return _M_h.erase(__first, __last); }
/**
* Erases all elements in an %unordered_multiset.
*
* Note that this function only erases the elements, and that if the
* elements themselves are pointers, the pointed-to memory is not touched
* in any way. Managing the pointer is the user's responsibility.
*/
void
clear() noexcept
{ _M_h.clear(); }
/**
* @brief Swaps data with another %unordered_multiset.
* @param __x An %unordered_multiset of the same element and allocator
* types.
*
* This exchanges the elements between two sets in constant time.
* Note that the global std::swap() function is specialized such that
* std::swap(s1,s2) will feed to this function.
*/
void
swap(unordered_multiset& __x)
{ _M_h.swap(__x._M_h); }
// observers.
/// Returns the hash functor object with which the %unordered_multiset
/// was constructed.
hasher
hash_function() const
{ return _M_h.hash_function(); }
/// Returns the key comparison object with which the %unordered_multiset
/// was constructed.
key_equal
key_eq() const
{ return _M_h.key_eq(); }
// lookup.
//@{
/**
* @brief Tries to locate an element in an %unordered_multiset.
* @param __x Element to be located.
* @return Iterator pointing to sought-after element, or end() if not
* found.
*
* This function takes a key and tries to locate the element with which
* the key matches. If successful the function returns an iterator
* pointing to the sought after element. If unsuccessful it returns the
* past-the-end ( @c end() ) iterator.
*/
iterator
find(const key_type& __x)
{ return _M_h.find(__x); }
const_iterator
find(const key_type& __x) const
{ return _M_h.find(__x); }
//@}
/**
* @brief Finds the number of elements.
* @param __x Element to located.
* @return Number of elements with specified key.
*/
size_type
count(const key_type& __x) const
{ return _M_h.count(__x); }
//@{
/**
* @brief Finds a subsequence matching given key.
* @param __x Key to be located.
* @return Pair of iterators that possibly points to the subsequence
* matching given key.
*/
std::pair
equal_range(const key_type& __x)
{ return _M_h.equal_range(__x); }
std::pair
equal_range(const key_type& __x) const
{ return _M_h.equal_range(__x); }
//@}
// bucket interface.
/// Returns the number of buckets of the %unordered_multiset.
size_type
bucket_count() const noexcept
{ return _M_h.bucket_count(); }
/// Returns the maximum number of buckets of the %unordered_multiset.
size_type
max_bucket_count() const noexcept
{ return _M_h.max_bucket_count(); }
/*
* @brief Returns the number of elements in a given bucket.
* @param __n A bucket index.
* @return The number of elements in the bucket.
*/
size_type
bucket_size(size_type __n) const
{ return _M_h.bucket_size(__n); }
/*
* @brief Returns the bucket index of a given element.
* @param __key A key instance.
* @return The key bucket index.
*/
size_type
bucket(const key_type& __key) const
{ return _M_h.bucket(__key); }
//@{
/**
* @brief Returns a read-only (constant) iterator pointing to the first
* bucket element.
* @param __n The bucket index.
* @return A read-only local iterator.
*/
local_iterator
begin(size_type __n)
{ return _M_h.begin(__n); }
const_local_iterator
begin(size_type __n) const
{ return _M_h.begin(__n); }
const_local_iterator
cbegin(size_type __n) const
{ return _M_h.cbegin(__n); }
//@}
//@{
/**
* @brief Returns a read-only (constant) iterator pointing to one past
* the last bucket elements.
* @param __n The bucket index.
* @return A read-only local iterator.
*/
local_iterator
end(size_type __n)
{ return _M_h.end(__n); }
const_local_iterator
end(size_type __n) const
{ return _M_h.end(__n); }
const_local_iterator
cend(size_type __n) const
{ return _M_h.cend(__n); }
//@}
// hash policy.
/// Returns the average number of elements per bucket.
float
load_factor() const noexcept
{ return _M_h.load_factor(); }
/// Returns a positive number that the %unordered_multiset tries to keep the
/// load factor less than or equal to.
float
max_load_factor() const noexcept
{ return _M_h.max_load_factor(); }
/**
* @brief Change the %unordered_multiset maximum load factor.
* @param __z The new maximum load factor.
*/
void
max_load_factor(float __z)
{ _M_h.max_load_factor(__z); }
/**
* @brief May rehash the %unordered_multiset.
* @param __n The new number of buckets.
*
* Rehash will occur only if the new number of buckets respect the
* %unordered_multiset maximum load factor.
*/
void
rehash(size_type __n)
{ _M_h.rehash(__n); }
/**
* @brief Prepare the %unordered_multiset for a specified number of
* elements.
* @param __n Number of elements required.
*
* Same as rehash(ceil(n / max_load_factor())).
*/
void
reserve(size_type __n)
{ _M_h.reserve(__n); }
template
friend bool
operator==(const unordered_multiset<_Value1, _Hash1, _Pred1, _Alloc1>&,
const unordered_multiset<_Value1, _Hash1, _Pred1, _Alloc1>&);
};
template
inline void
swap(unordered_set<_Value, _Hash, _Pred, _Alloc>& __x,
unordered_set<_Value, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
template
inline void
swap(unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __x,
unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __y)
{ __x.swap(__y); }
template
inline bool
operator==(const unordered_set<_Value, _Hash, _Pred, _Alloc>& __x,
const unordered_set<_Value, _Hash, _Pred, _Alloc>& __y)
{ return __x._M_h._M_equal(__y._M_h); }
template
inline bool
operator!=(const unordered_set<_Value, _Hash, _Pred, _Alloc>& __x,
const unordered_set<_Value, _Hash, _Pred, _Alloc>& __y)
{ return !(__x == __y); }
template
inline bool
operator==(const unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __x,
const unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __y)
{ return __x._M_h._M_equal(__y._M_h); }
template
inline bool
operator!=(const unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __x,
const unordered_multiset<_Value, _Hash, _Pred, _Alloc>& __y)
{ return !(__x == __y); }
_GLIBCXX_END_NAMESPACE_CONTAINER
} // namespace std
#endif /* _UNORDERED_SET_H */