/* * Copyright (c) 2000, 2002 X-Way Rights BV * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /*!\file rsa.h * \brief RSA algorithm. * \author Bob Deblier * \ingroup IF_m IF_rsa_m */ #ifndef _RSA_H #define _RSA_H #include "beecrypt/rsakp.h" #ifdef __cplusplus extern "C" { #endif /*!\fn int rsapub(const mpbarrett* n, const mpnumber* e, const mpnumber* m, mpnumber* c) * \brief This function performs a raw RSA public key operation. * * This function can be used for encryption and verifying. * * It performs the following operation: * \li \f$c=m^{e}\ \textrm{mod}\ n\f$ * * \param n The RSA modulus. * \param e The RSA public exponent. * \param m The message. * \param c The ciphertext. * \retval 0 on success. * \retval -1 on failure. */ BEECRYPTAPI int rsapub(const mpbarrett* n, const mpnumber* e, const mpnumber* m, mpnumber* c); /*!\fn int rsapri(const mpbarrett* n, const mpnumber* d, const mpnumber* c, mpnumber* m) * \brief This function performs a raw RSA private key operation. * * This function can be used for decryption and signing. * * It performs the operation: * \li \f$m=c^{d}\ \textrm{mod}\ n\f$ * * \param n The modulus. * \param d The private exponent. * \param c The ciphertext. * \param m The message. * \retval 0 on success. * \retval -1 on failure. */ BEECRYPTAPI int rsapri(const mpbarrett* n, const mpnumber* d, const mpnumber* c, mpnumber* m); /*!\fn int rsapricrt(const mpbarrett* n, const mpbarrett* p, const mpbarrett* q, const mpnumber* dp, const mpnumber* dq, const mpnumber* qi, const mpnumber* c, mpnumber* m) * * \brief This function performs a raw RSA private key operation, with * application of the Chinese Remainder Theorem. * * It performs the operation: * \li \f$j_1=c^{dp}\ \textrm{mod}\ p\f$ * \li \f$j_2=c^{dq}\ \textrm{mod}\ q\f$ * \li \f$h=qi \cdot (j_1-j_2)\ \textrm{mod}\ p\f$ * \li \f$m=j_2+hq\f$ * * \param n The modulus. * \param p The first prime factor. * \param q The second prime factor. * \param dp The private exponent d mod (p-1). * \param dq The private exponent d (q-1). * \param qi The inverse of q mod p. * \param c The ciphertext. * \param m The message. * \retval 0 on success. * \retval -1 on failure. */ BEECRYPTAPI int rsapricrt(const mpbarrett* n, const mpbarrett* p, const mpbarrett* q, const mpnumber* dp, const mpnumber* dq, const mpnumber* qi, const mpnumber* c, mpnumber* m); /*!\fn int rsavrfy(const mpbarrett* n, const mpnumber* e, const mpnumber* m, const mpnumber* c) * \brief This function performs a raw RSA verification. * * It verifies if ciphertext \a c was encrypted from cleartext \a m * with the private key matching the given public key \a (n, e). * * \param n The modulus. * \param e The public exponent. * \param m The cleartext message. * \param c The ciphertext message. * \retval 1 on success. * \retval 0 on failure. */ BEECRYPTAPI int rsavrfy(const mpbarrett* n, const mpnumber* e, const mpnumber* m, const mpnumber* c); #ifdef __cplusplus } #endif #endif