
�
User’s and�Programmer’s�Manual
Version 1.03
� TIME \@ "MMMM d, yyyy" �January 30, 1998�

Paul Scherrer Institute, Switzerland
TRIUMF, Canada
�Trademark notice: All trademarks in this manual are acknowledged as such.

“if everything fails, read the manual!”
		- counting house graffiti

Author contacts:
Stefan Ritt, PSI, Switzerland
ritt@psi.ch

Pierre André Amaudruz, TRIUMF, Canada
amaudruz@triumf.ca

MIDAS home page
http://pibeta.psi.ch/midas
�Table of Contents
� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc410812982 � PAGEREF _Toc410812982 �1��
1.1 What is MIDAS?	� GOTOBUTTON _Toc410812983 � PAGEREF _Toc410812983 �1��
1.2 What can MIDAS do for you?	� GOTOBUTTON _Toc410812984 � PAGEREF _Toc410812984 �2��
1.3 MIDAS Components	� GOTOBUTTON _Toc410812985 � PAGEREF _Toc410812985 �3��
1.3.1 MIDAS Library	� GOTOBUTTON _Toc410812986 � PAGEREF _Toc410812986 �3��
1.3.2 Buffer Manager	� GOTOBUTTON _Toc410812987 � PAGEREF _Toc410812987 �3��
1.3.3 Message System	� GOTOBUTTON _Toc410812988 � PAGEREF _Toc410812988 �4��
1.3.4 Online Database	� GOTOBUTTON _Toc410812989 � PAGEREF _Toc410812989 �4��
1.3.5 Experiments	� GOTOBUTTON _Toc410812990 � PAGEREF _Toc410812990 �5��
1.3.6 Run States	� GOTOBUTTON _Toc410812991 � PAGEREF _Toc410812991 �5��
1.3.7 MIDAS Server	� GOTOBUTTON _Toc410812992 � PAGEREF _Toc410812992 �5��
1.3.8 Front-end Program	� GOTOBUTTON _Toc410812993 � PAGEREF _Toc410812993 �6��
1.3.9 Data Logger	� GOTOBUTTON _Toc410812994 � PAGEREF _Toc410812994 �6��
1.3.10 MIDAS Analyzer	� GOTOBUTTON _Toc410812995 � PAGEREF _Toc410812995 �7��
1.3.11 Run Control	� GOTOBUTTON _Toc410812996 � PAGEREF _Toc410812996 �7��
1.3.12 Slow Control System	� GOTOBUTTON _Toc410812997 � PAGEREF _Toc410812997 �7��
1.3.13 History System	� GOTOBUTTON _Toc410812998 � PAGEREF _Toc410812998 �8��
2. Quick Start	� GOTOBUTTON _Toc410812999 � PAGEREF _Toc410812999 �9��
2.1 Installation	� GOTOBUTTON _Toc410813000 � PAGEREF _Toc410813000 �9��
2.1.1 UNIX	� GOTOBUTTON _Toc410813001 � PAGEREF _Toc410813001 �9��
2.1.2 Windows NT	� GOTOBUTTON _Toc410813002 � PAGEREF _Toc410813002 �12��
2.1.3 VxWorks	� GOTOBUTTON _Toc410813003 � PAGEREF _Toc410813003 �14��
2.1.4 VMS	� GOTOBUTTON _Toc410813004 � PAGEREF _Toc410813004 �14��
2.1.5 MS-DOS	� GOTOBUTTON _Toc410813005 � PAGEREF _Toc410813005 �14��
2.2 Running the Sample Experiment	� GOTOBUTTON _Toc410813006 � PAGEREF _Toc410813006 �15��
2.3 What next?	� GOTOBUTTON _Toc410813007 � PAGEREF _Toc410813007 �17��
3. Using MIDAS	� GOTOBUTTON _Toc410813008 � PAGEREF _Toc410813008 �18��
3.1 Setting up a New Experiment	� GOTOBUTTON _Toc410813009 � PAGEREF _Toc410813009 �18��
3.1.1 Defining an Experiment	� GOTOBUTTON _Toc410813010 � PAGEREF _Toc410813010 �18��
3.1.2 Restricting Access to an Experiment	� GOTOBUTTON _Toc410813011 � PAGEREF _Toc410813011 �19��
3.1.3 Creating a Front-end	� GOTOBUTTON _Toc410813012 � PAGEREF _Toc410813012 �20��
3.1.4 Creating a New Analyzer	� GOTOBUTTON _Toc410813013 � PAGEREF _Toc410813013 �28��
3.2 Running an Experiment	� GOTOBUTTON _Toc410813014 � PAGEREF _Toc410813014 �33��
3.2.1 Start/stop a Run	� GOTOBUTTON _Toc410813015 � PAGEREF _Toc410813015 �33��
3.2.2 Modifying Run Parameters	� GOTOBUTTON _Toc410813016 � PAGEREF _Toc410813016 �34��
3.2.3 Data Logger Settings	� GOTOBUTTON _Toc410813017 � PAGEREF _Toc410813017 �35��
3.2.4 Monitoring a Run	� GOTOBUTTON _Toc410813018 � PAGEREF _Toc410813018 �38��
3.2.5 The Message System	� GOTOBUTTON _Toc410813019 � PAGEREF _Toc410813019 �39��
3.3 The MIDAS Analyzer	� GOTOBUTTON _Toc410813020 � PAGEREF _Toc410813020 �39��
3.3.1 Multi Stage Concept	� GOTOBUTTON _Toc410813021 � PAGEREF _Toc410813021 �40��
3.3.2 Analyzer Parameters	� GOTOBUTTON _Toc410813022 � PAGEREF _Toc410813022 �40��
3.3.3 Writing the Code	� GOTOBUTTON _Toc410813023 � PAGEREF _Toc410813023 �41��
3.3.4 Online Usage	� GOTOBUTTON _Toc410813024 � PAGEREF _Toc410813024 �43��
3.3.5 Off-line Usage	� GOTOBUTTON _Toc410813025 � PAGEREF _Toc410813025 �45��
3.4 Troubleshooting	� GOTOBUTTON _Toc410813026 � PAGEREF _Toc410813026 �47��
3.4.1 Crashed Front-end	� GOTOBUTTON _Toc410813027 � PAGEREF _Toc410813027 �47��
3.4.2 Corrupt ODB	� GOTOBUTTON _Toc410813028 � PAGEREF _Toc410813028 �47��
3.4.3 Tape Problems	� GOTOBUTTON _Toc410813029 � PAGEREF _Toc410813029 �48��
4. The Slow Control System	� GOTOBUTTON _Toc410813030 � PAGEREF _Toc410813030 �49��
4.1 Concept	� GOTOBUTTON _Toc410813031 � PAGEREF _Toc410813031 �49��
4.2 Writing a Slow Control Front-end	� GOTOBUTTON _Toc410813032 � PAGEREF _Toc410813032 �50��
4.3 Using the Slow Control System	� GOTOBUTTON _Toc410813033 � PAGEREF _Toc410813033 �51��
4.4 The HVEdit Program	� GOTOBUTTON _Toc410813034 � PAGEREF _Toc410813034 �53��
4.5 Writing a Control Program	� GOTOBUTTON _Toc410813035 � PAGEREF _Toc410813035 �53��
5. Utilities	� GOTOBUTTON _Toc410813036 � PAGEREF _Toc410813036 �55��
5.1 odbedit: Online Database Editor	� GOTOBUTTON _Toc410813037 � PAGEREF _Toc410813037 �55��
5.2 mstat: Status Display	� GOTOBUTTON _Toc410813038 � PAGEREF _Toc410813038 �57��
5.3 mdump: Event Dump	� GOTOBUTTON _Toc410813039 � PAGEREF _Toc410813039 �58��
5.4 mtape: Tape Utility	� GOTOBUTTON _Toc410813040 � PAGEREF _Toc410813040 �59��
5.5 mhist: Data History Display	� GOTOBUTTON _Toc410813041 � PAGEREF _Toc410813041 �61��
5.6 mfcna: CAMAC f, c, n, a Utility	� GOTOBUTTON _Toc410813042 � PAGEREF _Toc410813042 �63��
6. Writing new MIDAS Applications	� GOTOBUTTON _Toc410813043 � PAGEREF _Toc410813043 �64��
6.1 Introduction	� GOTOBUTTON _Toc410813044 � PAGEREF _Toc410813044 �64��
6.2 Common Routines	� GOTOBUTTON _Toc410813045 � PAGEREF _Toc410813045 �65��
6.2.1 Connecting to an Experiment	� GOTOBUTTON _Toc410813046 � PAGEREF _Toc410813046 �65��
6.2.2 Run Transitions	� GOTOBUTTON _Toc410813047 � PAGEREF _Toc410813047 �66��
6.2.3 Other Functions	� GOTOBUTTON _Toc410813048 � PAGEREF _Toc410813048 �67��
6.3 Buffer Manager Routines	� GOTOBUTTON _Toc410813049 � PAGEREF _Toc410813049 �68��
6.4 System Message Routines	� GOTOBUTTON _Toc410813050 � PAGEREF _Toc410813050 �69��
6.5 ODB Routines	� GOTOBUTTON _Toc410813051 � PAGEREF _Toc410813051 �70��
6.6 System Services	� GOTOBUTTON _Toc410813052 � PAGEREF _Toc410813052 �73��
7. Appendix	� GOTOBUTTON _Toc410813053 � PAGEREF _Toc410813053 �75��
7.1 Appendix A: Online Database Structure	� GOTOBUTTON _Toc410813054 � PAGEREF _Toc410813054 �75��
7.2 Appendix B: I/O Libraries for CAMAC, VME and FASTBUS	� GOTOBUTTON _Toc410813055 � PAGEREF _Toc410813055 �77��
7.3 Appendix C: MIDAS Event Format	� GOTOBUTTON _Toc410813056 � PAGEREF _Toc410813056 �78��
7.3.1 Event Format	� GOTOBUTTON _Toc410813057 � PAGEREF _Toc410813057 �78��
7.3.2 Bank Format	� GOTOBUTTON _Toc410813058 � PAGEREF _Toc410813058 �78��
7.3.3 Tape Format	� GOTOBUTTON _Toc410813059 � PAGEREF _Toc410813059 �79��
7.4 Appendix D: YBOS Event Format	� GOTOBUTTON _Toc410813060 � PAGEREF _Toc410813060 �80��
7.5 Appendix E: Supported Hardware	� GOTOBUTTON _Toc410813061 � PAGEREF _Toc410813061 �81��
7.6 Appendix F: Alphabetical MIDAS Library Reference	� GOTOBUTTON _Toc410813062 � PAGEREF _Toc410813062 �84��
7.6.1 bk_close	� GOTOBUTTON _Toc410813063 � PAGEREF _Toc410813063 �85��
7.6.2 bk_create	� GOTOBUTTON _Toc410813064 � PAGEREF _Toc410813064 �86��
7.6.3 bk_init	� GOTOBUTTON _Toc410813065 � PAGEREF _Toc410813065 �87��
7.6.4 bk_iterate	� GOTOBUTTON _Toc410813066 � PAGEREF _Toc410813066 �88��
7.6.5 bk_locate	� GOTOBUTTON _Toc410813067 � PAGEREF _Toc410813067 �89��
7.6.6 bk_size	� GOTOBUTTON _Toc410813068 � PAGEREF _Toc410813068 �90��
7.6.7 bk_swap	� GOTOBUTTON _Toc410813069 � PAGEREF _Toc410813069 �91��
7.6.8 bm_close_buffer	� GOTOBUTTON _Toc410813070 � PAGEREF _Toc410813070 �92��
7.6.9 bm_compose_event	� GOTOBUTTON _Toc410813071 � PAGEREF _Toc410813071 �93��
7.6.10 bm_delete_request	� GOTOBUTTON _Toc410813072 � PAGEREF _Toc410813072 �94��
7.6.11 bm_empty_buffers	� GOTOBUTTON _Toc410813073 � PAGEREF _Toc410813073 �95��
7.6.12 bm_flush_cache	� GOTOBUTTON _Toc410813074 � PAGEREF _Toc410813074 �96��
7.6.13 bm_open_buffer	� GOTOBUTTON _Toc410813075 � PAGEREF _Toc410813075 �97��
7.6.14 bm_receive_event	� GOTOBUTTON _Toc410813076 � PAGEREF _Toc410813076 �99��
7.6.15 bm_request_event	� GOTOBUTTON _Toc410813077 � PAGEREF _Toc410813077 �101��
7.6.16 bm_send_event	� GOTOBUTTON _Toc410813078 � PAGEREF _Toc410813078 �103��
7.6.17 bm_set_cache_size	� GOTOBUTTON _Toc410813079 � PAGEREF _Toc410813079 �105��
7.6.18 cm_connect_client	� GOTOBUTTON _Toc410813080 � PAGEREF _Toc410813080 �106��
7.6.19 cm_connect_experiment	� GOTOBUTTON _Toc410813081 � PAGEREF _Toc410813081 �107��
7.6.20 cm_disconnect_client	� GOTOBUTTON _Toc410813082 � PAGEREF _Toc410813082 �109��
7.6.21 cm_disconnect_experiment	� GOTOBUTTON _Toc410813083 � PAGEREF _Toc410813083 �110��
7.6.22 cm_enable_watchdog	� GOTOBUTTON _Toc410813084 � PAGEREF _Toc410813084 �111��
7.6.23 cm_execute	� GOTOBUTTON _Toc410813085 � PAGEREF _Toc410813085 �112��
7.6.24 cm_exist	� GOTOBUTTON _Toc410813086 � PAGEREF _Toc410813086 �113��
7.6.25 cm_get_environment	� GOTOBUTTON _Toc410813087 � PAGEREF _Toc410813087 �114��
7.6.26 cm_get_experiment_database	� GOTOBUTTON _Toc410813088 � PAGEREF _Toc410813088 �116��
7.6.27 cm_msg	� GOTOBUTTON _Toc410813089 � PAGEREF _Toc410813089 �117��
7.6.28 cm_msg_register	� GOTOBUTTON _Toc410813090 � PAGEREF _Toc410813090 �119��
7.6.29 cm_register_function	� GOTOBUTTON _Toc410813091 � PAGEREF _Toc410813091 �120��
7.6.30 cm_register_transition	� GOTOBUTTON _Toc410813092 � PAGEREF _Toc410813092 �121��
7.6.31 cm_set_watchdog_params	� GOTOBUTTON _Toc410813093 � PAGEREF _Toc410813093 �123��
7.6.32 cm_shutdown	� GOTOBUTTON _Toc410813094 � PAGEREF _Toc410813094 �125��
7.6.33 cm_synchronize	� GOTOBUTTON _Toc410813095 � PAGEREF _Toc410813095 �126��
7.6.34 cm_transition	� GOTOBUTTON _Toc410813096 � PAGEREF _Toc410813096 �127��
7.6.35 cm_yield	� GOTOBUTTON _Toc410813097 � PAGEREF _Toc410813097 �129��
7.6.36 db_copy	� GOTOBUTTON _Toc410813098 � PAGEREF _Toc410813098 �130��
7.6.37 db_create_key	� GOTOBUTTON _Toc410813099 � PAGEREF _Toc410813099 �132��
7.6.38 db_create_link	� GOTOBUTTON _Toc410813100 � PAGEREF _Toc410813100 �133��
7.6.39 db_create_record	� GOTOBUTTON _Toc410813101 � PAGEREF _Toc410813101 �134��
7.6.40 db_delete_key	� GOTOBUTTON _Toc410813102 � PAGEREF _Toc410813102 �136��
7.6.41 db_enum_key	� GOTOBUTTON _Toc410813103 � PAGEREF _Toc410813103 �137��
7.6.42 db_find_key	� GOTOBUTTON _Toc410813104 � PAGEREF _Toc410813104 �138��
7.6.43 db_get_data	� GOTOBUTTON _Toc410813105 � PAGEREF _Toc410813105 �139��
7.6.44 db_get_data_index	� GOTOBUTTON _Toc410813106 � PAGEREF _Toc410813106 �140��
7.6.45 db_get_key	� GOTOBUTTON _Toc410813107 � PAGEREF _Toc410813107 �141��
7.6.46 db_get_key_time	� GOTOBUTTON _Toc410813108 � PAGEREF _Toc410813108 �142��
7.6.47 db_get_record	� GOTOBUTTON _Toc410813109 � PAGEREF _Toc410813109 �143��
7.6.48 db_get_value	� GOTOBUTTON _Toc410813110 � PAGEREF _Toc410813110 �145��
7.6.49 db_load	� GOTOBUTTON _Toc410813111 � PAGEREF _Toc410813111 �147��
7.6.50 db_open_record	� GOTOBUTTON _Toc410813112 � PAGEREF _Toc410813112 �148��
7.6.51 db_paste	� GOTOBUTTON _Toc410813113 � PAGEREF _Toc410813113 �150��
7.6.52 db_rename_key	� GOTOBUTTON _Toc410813114 � PAGEREF _Toc410813114 �151��
7.6.53 db_reorder_key	� GOTOBUTTON _Toc410813115 � PAGEREF _Toc410813115 �152��
7.6.54 db_save	� GOTOBUTTON _Toc410813116 � PAGEREF _Toc410813116 �154��
7.6.55 db_scan_tree	� GOTOBUTTON _Toc410813117 � PAGEREF _Toc410813117 �155��
7.6.56 db_set_data	� GOTOBUTTON _Toc410813118 � PAGEREF _Toc410813118 �156��
7.6.57 db_set_data_index	� GOTOBUTTON _Toc410813119 � PAGEREF _Toc410813119 �157��
7.6.58 db_set_mode	� GOTOBUTTON _Toc410813120 � PAGEREF _Toc410813120 �158��
7.6.59 db_set_record	� GOTOBUTTON _Toc410813121 � PAGEREF _Toc410813121 �159��
7.6.60 db_set_value	� GOTOBUTTON _Toc410813122 � PAGEREF _Toc410813122 �161��
7.6.61 db_sprintf	� GOTOBUTTON _Toc410813123 � PAGEREF _Toc410813123 �163��
7.6.62 db_sscanf	� GOTOBUTTON _Toc410813124 � PAGEREF _Toc410813124 �164��
7.6.63 hs_define_event	� GOTOBUTTON _Toc410813125 � PAGEREF _Toc410813125 �165��
7.6.64 hs_dump	� GOTOBUTTON _Toc410813126 � PAGEREF _Toc410813126 �167��
7.6.65 hs_enum_events	� GOTOBUTTON _Toc410813127 � PAGEREF _Toc410813127 �168��
7.6.66 hs_enum_tags	� GOTOBUTTON _Toc410813128 � PAGEREF _Toc410813128 �169��
7.6.67 hs_read	� GOTOBUTTON _Toc410813129 � PAGEREF _Toc410813129 �170��
7.6.68 hs_set_path	� GOTOBUTTON _Toc410813130 � PAGEREF _Toc410813130 �172��
7.6.69 hs_write_event	� GOTOBUTTON _Toc410813131 � PAGEREF _Toc410813131 �173��
7.6.70 rpc_client_call	� GOTOBUTTON _Toc410813132 � PAGEREF _Toc410813132 �174��
7.6.71 rpc_convert_data	� GOTOBUTTON _Toc410813133 � PAGEREF _Toc410813133 �176��
7.6.72 rpc_convert_single	� GOTOBUTTON _Toc410813134 � PAGEREF _Toc410813134 �177��
7.6.73 rpc_flush_event	� GOTOBUTTON _Toc410813135 � PAGEREF _Toc410813135 �179��
7.6.74 rpc_get_convert_flags	� GOTOBUTTON _Toc410813136 � PAGEREF _Toc410813136 �180��
7.6.75 rpc_send_event	� GOTOBUTTON _Toc410813137 � PAGEREF _Toc410813137 �181��
7.6.76 ss_clear_screen	� GOTOBUTTON _Toc410813138 � PAGEREF _Toc410813138 �183��
7.6.77 ss_directio_xxx	� GOTOBUTTON _Toc410813139 � PAGEREF _Toc410813139 �184��
7.6.78 ss_getchar	� GOTOBUTTON _Toc410813140 � PAGEREF _Toc410813140 �186��
7.6.79 ss_getpass	� GOTOBUTTON _Toc410813141 � PAGEREF _Toc410813141 �187��
7.6.80 ss_gets	� GOTOBUTTON _Toc410813142 � PAGEREF _Toc410813142 �188��
7.6.81 ss_kbhit	� GOTOBUTTON _Toc410813143 � PAGEREF _Toc410813143 �189��
7.6.82 ss_millitime	� GOTOBUTTON _Toc410813144 � PAGEREF _Toc410813144 �190��
7.6.83 ss_printf	� GOTOBUTTON _Toc410813145 � PAGEREF _Toc410813145 �191��
7.6.84 ss_sleep	� GOTOBUTTON _Toc410813146 � PAGEREF _Toc410813146 �192��
7.6.85 ss_tape_xxx	� GOTOBUTTON _Toc410813147 � PAGEREF _Toc410813147 �193��
7.6.86 ss_time	� GOTOBUTTON _Toc410813148 � PAGEREF _Toc410813148 �195��
7.7 Appendix G: Computer Busy Logic	� GOTOBUTTON _Toc410813149 � PAGEREF _Toc410813149 �81��
7.8 Appendix H: Frequently Asked Questions (FAQ)	� GOTOBUTTON _Toc410813150 � PAGEREF _Toc410813150 �196��
�

List of Figures
� TOC \c "Figure" �Figure 1 Overview of the MIDAS components	� GOTOBUTTON _Toc410813151 � PAGEREF _Toc410813151 �2��
Figure 2 MIDAS state diagram	� GOTOBUTTON _Toc410813152 � PAGEREF _Toc410813152 �5��
Figure 3 High Voltage Editor	� GOTOBUTTON _Toc410813153 � PAGEREF _Toc410813153 �8��
Figure 4 Changes in the ODB get propagated to the hardware by the front-end program	� GOTOBUTTON _Toc410813154 � PAGEREF _Toc410813154 �28��
Figure 5 Example of a three stage analyzer	� GOTOBUTTON _Toc410813155 � PAGEREF _Toc410813155 �40��
Figure 6 PAW output for online N-tuples	� GOTOBUTTON _Toc410813156 � PAGEREF _Toc410813156 �44��
Figure 7 Class driver and Device driver in the slow control system	� GOTOBUTTON _Toc410813157 � PAGEREF _Toc410813157 �50��
��
Typographical Conventions
This manual use the font conventions described in the following table for special elements. Subroutine names include parentheses as in printf(). Chapters are referenced with Chapter Number “Title”.
Term�Example��files�/etc/exptab��commands�copy��source code listing�main()��program output�Program started��user input�start��ODB keys�/Runinfo��References�Chapter � REF _Ref408986666 \n �3� “� REF _Ref408986603 * MERGEFORMAT �Using MIDAS�”��
�Introduction
The � XE "MIDAS" �Maximum Integrated Data Acquisition System (MIDAS) is a general purpose system for event based data acquisition in small and medium scale physics experiments. It has been developed at the Paul Scherrer Institute� XE "Paul Scherrer Institute" � (Switzerland) and at TRIUMF� XE "TRIUMF" � (Canada) between 1993 and 1996 (Release of Version 1.0). While the system is used in many different experiments, the development continues with new features and tools. For the newest status check the MIDAS home page� XE "MIDAS:home page" � at
http://pibeta.psi.ch/midas
What is MIDAS?
MIDAS consists of a C library and several applications. They run on many different operating systems like UNIX, Windows NT, VxWorks, VMS and MS-DOS.
The library contains functions to send data in form of events between different computers over a TCP/IP network or between different processes on the same computer.
Standard applications included in the MIDAS package are a “front-end� XE "front-end" �” to read data from hardware like VME and CAMAC, a “data logger� XE "data logger" �” to write the data stream to disk or tape, an “analyzer� XE "analyzer" �” for online data analysis and histogram display and a run control� XE "run control" � program.

Figure � SEQ Figure * ARABIC �1��Overview� XE "MIDAS:overview" � of the MIDAS components����
What can MIDAS do for you?
MIDAS has been designed for small and medium experiments. It can be used in distributed environments where one or more front-ends are connected to the back-end� XE "back-end" � via Ethernet. The front-end might be an embedded system like a VME CPU running VxWorks� XE "VxWorks" � or a PC running Windows NT� XE "Windows NT" � or Linux� XE "Linux" �. Data rates of 1050kB/sec over standard Ethernet� XE "Ethernet" � and 6.1MB/sec over Fast Ethernet� XE "Fast Ethernet" � can be achieved.
For small experiments and test setups the front-end program can run on the back-end computer thus eliminating the network transfer, presuming that the back-end computer has direct access to the hardware. Device drivers for common PC-CAMAC interfaces have been written for Windows NT and Linux. Drivers for PC-VME interfaces are commercially available for Windows NT.
For data analysis users can write a complete new analyzer or use the standard MIDAS analyzer which uses HBOOK� XE "HBOOK" �� routines for histogramming and PAW� XE "PAW" �� for histogram display.
The MIDAS package contains a slow control system which can be used to control high voltage supplies, temperature control units etc. The slow control system is fully integrated in the main data acquisition. Slow control values can be written together with event data to tape. All clients have access to the slow control system.
MIDAS Components
In a standard experiment following MIDAS software components� XE "MIDAS:components" � can be distinguished. They can run on different computers or on a single computer:
Buffer manager which receives and distributes data in form of events
Message system which receives and distributes status and error messages
Online database which stores all experiment relevant data
MIDAS server which enables remote access to the buffer manager and online database
Font-ends which read data from hardware
Data logger which writes events to disk or tape
Analyzer which analyzes events and creates histograms
Run control program
Slow control system for high voltage devices etc.
History system
These components are described briefly in the following paragraphs. For a more detailed description refer to Chapter � REF _Ref408986666 \n �3� “� REF _Ref408986603 * MERGEFORMAT �Using MIDAS�”.
MIDAS Library
The MIDAS library� XE "MIDAS:library" � contains about 40.000 lines of C code with over 160 functions (Version 1.0) to access the various software components. From a user point of view only very few routines are needed for most operations. A minimal program which starts a run only contains three lines of code. It is possible to call the library routines from FORTRAN programs. The major functions are described in � REF _Ref410211008 * MERGEFORMAT �Appendix G: Alphabetical MIDAS Library Reference�
Buffer Manager
The buffer manager� XE "buffer manager" � consists of a set of library functions for event distribution. A buffer is a shared memory� XE "shared memory" � region in RAM which can be accessed by several processes called “clients� XE "clients" �”. Processes sending events to a buffer are called “producers� XE "producers" �”, processes reading events are called “consumers� XE "consumers" �”. A buffer is organized as a FIFO� XE "FIFO" � (First-In-First-Out) memory. Consumers can specify which type of events they want to receive from a buffer. For this purpose events contain a MIDAS header with an event ID and other information.
Buffers can be accessed locally or remotely via the MIDAS server� XE "MIDAS:server" �. The data throughput of a configuration of one producer and two consumers is about 10MB/sec on a 200 MHz Pentium PC running Windows NT. The remote access speed is limited by the network.
A common problem in DAQ systems is that a crashed client� XE "crashed client" �, like a user analyzer, can block the whole system. To solve this problem, a watchdog system� XE "watchdog system" � has been implemented. Every client attached to a buffer periodically signals that it is alive by writing the current time to a specific client region in the shared memory. Whenever the process crashes or is killed, the other clients see that the crashed client does not update its time any more. In this case all requests from that client are removed from that buffer which automatically releases blocked producers.
Message System
The message system� XE "message system" � is based on the buffer manager. A dedicated buffer is used to receive and distribute messages. All clients can produce status or error messages with a single call to the MIDAS library. These messages are distributed to the other clients and to a central log file.
Online Database
In a distributed DAQ environment configuration data is usually stored in several files on different computers. MIDAS uses a different approach. All experiment relevant data is stored in a central database called “Online Database� XE "online database" �” (ODB). This database contains run parameters� XE "run parameters" �, logging channel information, parameters for front-ends and analyzers, slow control values as well as status and performance data. The main advantage of this concept is that all programs participating in an experiment have full access to all relevant data without having to contact different computers.
The ODB is located completely in shared memory� XE "shared memory" � on the back-end computer for fast access of up to 50,000 accesses per second locally and 500 accesses per second remotely over the MIDAS server. It is hierarchically structured, similar to a file system, with directories� XE "directories" � and sub-directories� XE "sub-directories" �. The data is stored in key� XE "key" �/data pairs, similar to the Windows NT registry. Keys can be dynamically created and deleted during runtime. A client can register a “hot-link”� XE "hot-link" � between a local C-structure and a sub-tree in the ODB. Whenever a value in this sub-tree is changed by another program, the C-structure automatically receives an update of the changed data. Additionally, a client can register a callback routine� XE "callback routine" � that is executed after a hot-link has been updated. This mechanism is very powerful to control the behavior of front-end programs and analyzers. It can also be used to control hardware. A front-end registers a routine that propagates parameters from the ODB directly to the hardware. A control program may change the hardware simply by writing a new value to the ODB.
Using this scheme, the control program becomes completely de-coupled from the actual hardware. It communicates only with the ODB and needs no knowledge about physical devices or addresses of nodes where front-ends are running.
Keys in the ODB can be locked for writing when a run is started. An image of the whole database can be written to the logging channels which reflects a snapshot of the current status of an experiment. The whole database or parts of it can be saved and loaded in a simple ASCII format. This feature can be used to load different sets of parameters for different runs.
Experiments
Different experiments� XE "experiments" � are distinguished in MIDAS by having their own ODB. Since each ODB resides in its own name space given by the directory from which it has been started, serveral experiments can run simultaneously on the same computer using a common MIDAS installation. Whenever a program participating in an experiment is started, the experiment name can be specified as a command line parameter or as an environment variable.
As list of all experiments on one machine is kept in the file exptab� XE "exptab" � which is located under /etc (UNIX) or \winnt\system32 (Windows NT). Different experiments can run under the same user name or under different user names.
Run States
The state model� XE "state model" �� XE "run states" � of an experiment is very simple. It can have three states: Stopped, Paused and Running. The transitions between states are called Start, Stop, Pause and Resume:

Figure � SEQ Figure * ARABIC �2��MIDAS state diagram����Each MIDAS client can register callback routines which are called at state transitions. There are also intermediate transitions “Pre-<Transition>” and “Post-<Transition>” which can be used to perform operations just before or after a transition. This feature is used for example by the logger which opens tape before the run starts and closes them after the run stops.
MIDAS Server
� XE "MIDAS:server" �For remote access� XE "remote access" � to a MIDAS experiment a remote procedure call� XE "remote procedure call" � (RPC� XE "RPC" �) server has been written. It uses an optimized MIDAS RPC scheme for improved access speed. The server can be started manually or via inetd� XE "inetd" � (UNIX) or as a service (Windows NT). For each incoming connection it creates a new sub-process which serves this connection over a TCP link. The connection protocol allows to connect to different experiments through a single server.
An optional password scheme has been developed to allow only authorized clients to access a specific experiment.
Front-end Program
The front-end� XE "front-end" � program runs on one or more computers which are connected to the experiment hardware. It consists of a general framework which is experiment independent and a set of routines which are written by the user. Routines exist for each state transition (like start / stop) and for the readout of events. Libraries exist for hardware access through CAMAC, VME, Fastbus, GPIB and RS232.
The front-end framework supports four kinds of events� XE "events" �:
Periodic events
Polled events
Interrupt events
Slow control events
Periodic events are scheduled periodically with a given interval. They can be used to read status information like scaler values, temperatures etc. Polled and interrupt events are generated by a hardware trigger which is usually generated from detector signals. Slow control events are a special class of events which are used in the slow control system. The mode of read-out can be specified individually for each event. Events can be read on transitions (like start/stop), or during run states. Examples are “read trigger event only when running” or “read periodic event if state is not paused and on all transitions”.
The framework takes care of sending events to the buffer manager and optionally a copy to the ODB. It uses a dedicated TCP/IP connection for maximum performance. Data caches on the front-end and on the server side reduce the amount of network operations giving a network transfer speed close to the physical limit of the network.
Rate statistics are calculated periodically and saved together with status information in the ODB.
Data Logger
The data logger� XE "data logger" � is a client running normally on the back-end computer which receives events from the buffer manager and saves them to disk, to tape or via FTP to a remote computer. It supports several logging channels in parallel with individual event selection criteria. Data can currently be written in four different formats: MIDAS binary, YBOS binary, ASCII and DUMP. The formats are explained in the appendix.
The logger can stop a run when a tape or disk is full or when a preset amount of data has been logged. An “auto restart” feature allows logging of several runs of a given size without user attention. At the beginning and end of each run an image of the ODB can be written to all logging channels and to a separate disk file.
MIDAS Analyzer
Users can write their own analyzer� XE "analyzer" � from scratch easily. Only a few lines of code are necessary to receive events from the buffer manager. Additionally, a analyzer framework which works with the HBOOK� XE "HBOOK" � histogramming functions from the CERN library� XE "CERN library" � is included in the MIDAS distribution. The concept is similar to the front-end framework. A system part of the analyzer takes care of receiving events, initializes the HBOOK system and automatically books N-tuples� XE "N-tuples" � for all events. It calls user routines for event analysis. The analyzer is structured into “stages� XE "stages" �”, where each stage analyzes a subset of the event data. Low level stages can perform ADC and TDC calibration, high level stages can calculate “physics” results.
The same analyzer executable can be used to run online (receive events from the buffer manager) and off-line� XE "off-line" � (read events from file). When running online, generated N-tuples are stored in a ring-buffer in shared memory. They can by analyzed with PAW immediately without stopping the run. When running off-line, the analyzer can read MIDAS binary files, analyze the events, add calculated data for each event and produce a HBOOK RZ� XE "HBOOK RZ files" � output file which can be read in by PAW later.
The analyzer framework also supports analyzer parameters� XE "analyzer parameters" �. It automatically maps C-structures used in the analyzer to ODB records via hot-links (see Chapter � REF _Ref409254095 \n �1.3.4� “� REF _Ref409254095 * MERGEFORMAT �Online Database�”). To control the analyzer, only the values in the ODB have to be changed which get automatically propagated to the analyzer parameters.
Run Control
� XE "run control" �To view and edit values in the ODB a program has been written called ODBEdit� XE "ODBEdit" �. This program has a simple ASCII interface so it can be used through telnet� XE "telnet" � connections. It contains commands to display, create and modify keys, to save and load parts of the ODB to/from ASCII files, and to start and stop runs. Since all configuration and status data is stored in the ODB, ODBEdit can be used to control the whole experiment.
ODBEdit can run in multiple instances on the same or on different computers. A password protection can be enabled so that the ODB can only be accessed by authorized users. In a special “chat” mode users can talk to each other via ODBEdit. All messages get logged in the MIDAS system log file.
Slow Control System
The MIDAS slow control system� XE "slow control system" � is based on the ODB. Demand and measured values from slow control equipment like high voltage supplies or beam line magnets are stored directly in the ODB. To control a device it is enough to modify the demand values in the database. The modified values get automatically propagated to a special slow control front-end, which uses device drivers to control the hardware. Measured values from the hardware are periodically send back to the ODB.
To control a slow control device, a slow control front-end is necessary. It consists of the standard MIDAS front-end framework and a driver for the device to be controlled. The device driver is very simple. It only contains functions to set a channel and to read back a channel. The MIDAS distribution contains already drivers for some standard devices, but new drivers can be written very easily.
The demand values for the slow control devices can be modified by ODBEdit or by a user program like the main analyzer. A graphical user interface running under Windows NT/95 has been written to control high voltage devices. It can set, load and print high voltages for different devices.

Figure � SEQ Figure * ARABIC �3��High Voltage Editor����
History System
The MIDAS history system� XE "history system" � stores slow control data and periodic events on disk. It can be queried to produce data-over-time plots (See mhist utility for details). Instead of using a standard database, it contains low level file functions to store and retrieve data which are very fast. A query of a value which was written once every minute over a period of one week is performed in two seconds. It is also possible to change the event definition during an experiment without restarting the history system.
Quick Start
For an easy start, a sample experiment� XE "sample experiment" � has been created. It contains a “dummy” front-end which doesn’t access any hardware but simulates some data with random numbers. An analyzer receives these data and creates histograms in a shared memory region which can be displayed with PAW.
To run the sample experiment, the MIDAS software has to be installed first. This process copies the MIDAS library and header files to system include and library directories. Then the MIDAS logger and an editor for the online database (ODBEdit) are copied to a system executable directory. A server gets installed to allow remote connection to the ODB and the buffer manager.
In the next step the sample front-end and sample analyzer are compiled. They can then run together with the logger on the same computer to simulate a full experiment. The ODBEdit� XE "ODBEdit" � program is used to control the experiment and to start and stop runs.
From this starting point the front-end and the analyzer can be modified to suit a real experiment. The front-end can be moved to another computer which has access to the experiment hardware. I/O Libraries for different hardware systems like CAMAC, VME, FASTBUS, RS232, GPIB etc. can be used to read out data.
Installation
UNIX
MIDAS version 1.0 officially supports following UNIX systems: Linux� XE "Linux" �, Solaris� XE "Solaris" �, FreeBSD� XE "FreeBSD" �, OSF/1� XE "OSF/1" � (DEC UNIX� XE "DEC UNIX" �) and Ultrix� XE "Ultrix" �. Since it’s highly portable, it can probably compiled on other system with only minor adjustments like different include files.
Step 1
Obtain the MIDAS distribution set via anonymous ftp from
ftp://pibeta.psi.ch/pub/midas
The UNIX version is called midas-x.xx.tar.gz where x.xx is the version number. Copy the distribution set to a directory of your choice. It is recommended to use <home>/midas where <home> is your home directory. For a public installation it is recommended to use /usr/local/ Then ftp the Z library� XE "Z library" � which is called zlib-1.0.4.tar.gz to the same directory.
Step 2
Decompress and extract the distribution set:
tar -zxvf midas-x.xx
If the GNU tar� XE "GNU tar" � is not available the -z flag won’t work. In this case the file has to be decompressed first and then untared:
gunzip midas-x.xx.tar.gz
tar -xvf midas-x.xx.tar
The gunzip� XE "gunzip" � program can be obtained from any GNU FTP site. For a index have a look at http://www.gnu.org/order/ftp.html. The extraction process creates a subdirectory <home>/midas/midas-x.xx where x.xx is again the version number. Following subdirectory structure is then created:
./doc�Documentation��./drivers�Hardware drivers��./examples�Example experiment��./include�C header files��./src�Source code��./utils�Utilities source code��./vxworks�Makefile for VxWorks��
The PAW analyzer which comes with the MIDAS distribution can generate compressed output files. For that purpose it needs the Z library. Extract it from zlib-1.0.4.tar.gz the same way as the MIDAS distribution. It generates a directory zlib-1.0.4. Then go to this directory and compile the Z library:
cd zlib-1.0.4
make
In case of problem refer to the README file in the zlib directory.
Step 3
Compile and install the MIDAS system files. In the midas-x.xx directory, enter
gmake
If the GNU make� XE "GNU make" � program is not available, obtain it from the above mentioned source. It is necessary for the automatic detection of the operating system it is running under. Alternatively, find all ifeq - endif combinations in the makefile and evaluate them manually since the standard make doesn’t understand these statements.
Then enter as the super-user� XE "super-user" �:
gmake install
If you don’t have super-user privileges, ask you system administrator to assist you in this step.
The installation will copy the MIDAS library, MIDAS tools and header files into system directories, usually /usr/local/lib, /usr/local/bin and /usr/local/include. Edit the makefile if you want to change these directories.
Make sure the CERN library� XE "CERN library" � is installed properly. The MIDAS analyzer needs libpacklib.a which is usually installed under /cern/pro/lib.
Step 4
Compile the sample experiment. Create a working directory which contains the front-end and analyzer program (in the following example called online). Copy the sample experiment source files to that directory:
cd ~		(to go to your home directory)
mkdir online
cp <home>/midas/midas-x.xx/examples/ experiment/*
Edit the makefile in the working directory to select the correct operating system and the proper directories. Then build the example front-end and analyzer:
make
This creates the two files frontend and analyzer. Set the environment variable MIDAS_DIR to point to the working directory:
setenv MIDAS_DIR <home>/online
This command should be added into your .login file.
Step 5
If you plan to run the front-end later on another computer, the MIDAS server program has to be started. You can either start it manually by entering
mserver� XE "mserver" �
or via inetd� XE "inetd" ��. To configure inetd, add following line to your /etc/services file:
midas 1175/tcp
Then add this single line to your /etc/inetd.conf file :
midas stream tcp nowait root /usr/local/bin/mserver /usr/local/bin/mserver.
This assumes that the mserver program is installed at /usr/local/bin/. Send a hang-up signal to inetd to reload the modified configuration file:
ps -A | grep inetd
<note the process id>
kill -HUP <id>
Each time you make a remote access to this computer, inetd will now start a copy of mserver.
To connect to different experiments, the server has to know in which directories and under which user names the experiments are running. For this purpose a list of all experiments running on a machine has to be defined in a file called exptab. This file is located under /etc and contains one line for each experiment describing the experiment name, the directory and the user name. Create this file with an editor containing following line to define an experiment called “Sample”:
Sample <home>/online <your name>
where <home> is your home directory (like /usr/users/john) and <your name> is your login name.
Windows NT
Step 1
Obtain the MIDAS distribution set via anonymous ftp from
ftp://pibeta.psi.ch/pub/midas
The NT version is called midas-x.xx.exe where x.xx is the version number. Copy the distribution set to a directory of your choice. It is recommended to use c:\. If you use a different drive than c:, substitute the drive letter in the following instructions by the one you use. Then ftp the Z library which is called zlib104.zip to c:\zlib.
Step 2
Extract the distribution set by executing it:
midas-x.xx
The extraction process creates a subdirectory \midas-x.xx where x.xx is again the version number. Following subdirectory structure is then created:
.\doc�Documentation��.\drivers�Hardware drivers��.\examples�Example experiment��.\include�C header files��.\src�Source code��.\utils�Utilities source code��.\nt�Makefiles for Visual C++��.\nt\lib�Libraries for Windows NT��.\nt\bin�Program binaries for Windows NT��.\nt\directio�DirectIO kernel driver for hardware access under Windows NT��.\nt\service�Files needed to install the Midas Server as a NT Service��
Step 3
Install the MIDAS system files. In the midas-x.xx directory, enter
install
This will install the MIDAS library under c:\midas\nt\lib, the MIDAS programs under c:\midas\nt\bin and the include files under c:\midas\include. Edit the file install.bat if you want to change these directories.
Set the “path” environment variable� XE "environment variable:path" � to the MIDAS executables at c:\midas\nt\bin. To do so, right-click on the “My Computer” icon on the desktop. Select “Properties” from the menu. On the dialog box, click on the “Environment” tab. Under “System variables”, search and select “Path”. On the “value” field, go to the end of the line and add the MIDAS executable directory .The path should then look somehow like: %SystemRoot%\system32;%SystemRoot%;c:\midas\nt\bin. Press the “Set” and “OK” button.
Make sure the CERN library� XE "CERN library" � is installed properly. The MIDAS analyzer needs packlib.lib which is usually installed under c:\cern\lib.
Step 4
Compile the sample experiment. Create a working directory which contains the front-end and analyzer program (in the following example called online). Copy the sample experiment source files to that directory:
cd c:\
mkdir online
copy c:\midas-x.xx\examples\experiment*.*
Build the example front-end and analyzer (this assumes that you have installed the command line tools of Visual C++):
nmake -f makefile.nt
This creates the two files frontend.exe and analyzer.exe. Set the environment variable MIDAS_DIR to point to the working directory. Open the “Environment” dialog box as under Step 3. Then enter "MIDAS_DIR" in the “Variable” box and “c:\online” in the “Value” field (without quotation marks). Press the “Set” and “OK” buttons.
Step 5
If you plan to run the front-end later on another computer, the MIDAS server program has to be started. You can either start it manually by entering
mserver
or as a Windows NT service. To configure it as a service, make sure you have administration privileges on the PC. Then execute the batch file:
c:\midas-x.xx\nt\service\install
and follow the instructions printed by this batch file.
To connect to different experiments, the server has to know in which directories and under which user names the experiments are running. For this purpose a list of all experiments running on a machine has to be defined in a file called exptab� XE "exptab" �. This file is located under C:\winnt\system32 and contains one line for each experiment describing the experiment name and the directory. Create this file with an editor containing the following line:
Sample c:\online
this defines experiment “Sample” in directory c:\online.
VxWorks
<to be written>
VMS
<to be written>
MS-DOS
A MIDAS client program can run under MS-DOS� XE "MS-DOS" �, given that a TCP/IP stack is running. MIDAS has been tested with PC/TCP� XE "PC/TCP" � from FTP Software. MIDAS programs cannot run locally under MS-DOS, they always need a back-end to connect to.
Special files needed to compile a MIDAS client under MS-DOS are included in the msdos directory. It contains project files (*.prj) for Turbo C++ and Borland C++. The include directory contains some include files which replace the standard include files (usually under \bc\include). Care has to be taken that the msdos\include directory precedes the \bc\incude directory in the include files path (usually specified under Options/Directories in Borland C++).
Instead of creating a MIDAS library, client programs contain the files midas.c, system.c, odb.c and mrpc.c directly in their project files. The PC/TCP library lpctcp.lib which contains the socket routines has to be linked to the executable. Only the large memory model is supported.
Using the operating system MS-DOS today seems a bit old fashioned. But it has to be considered that a MIDAS front-end does not need a multi-process operating system because it contains its own scheduler. A multi-process operating system only puts additional load on the computer due to context switching which is not necessary. It has been proven that a MIDAS front-end runs fastest on a given PC under MS-DOS compared to a multi-process operating system like Windows NT or VxWorks. Another fact is that old PC’s which are not powerful enough to run Windows can be recycled as MIDAS slow control front-ends for high voltage control or similar tasks.
The main disadvantage of using MS-DOS is the fact that programs cannot be loaded remotely like under VxWorks. To overcome this problem, following scheme has been successfully used. The front-end program is compiled on the back-end PC running Windows NT in the counting house which runs the freeware NFS server SOSS�. The front-end computer mounts the directory which contains the front-end executable program (usually c:\online). It then starts the front-end in a loop. This can be done in the autoexec.bat file:
...�<mount back-end c: as drive n:>�n:�cd online�:loop�frontend -h <host name>�goto loop�
If the front-end program needs to be modified, it is recompiled on the NT computer which replaces frontend.exe. Then the front-end is stopped with the ODBEdit command sh frontend. The loop in autoexec.bat restarts then the new front-end automatically.
Running the Sample Experiment
Now you can run the sample experiment. Start the front-end, the logger and the analyzer in three different windows from your working directory (called “online” in the above installation):
frontend
analyzer
mlogger
All three programs will connect to the local online database and buffer manager. The front-end will display status information and statistics about “trigger events� XE "trigger events" �” and “scaler events� XE "scaler events" �”. Trigger events are generated as fast as possible (in a real experiment there will be a hardware trigger) while scaler events are generated every ten seconds. To control the experiment, start
odbedit� XE "odbedit" �
This program allows access to the ODB and is used for run control. Try these commands:
scl�Show all connected clients��cd runinfo�Go to “runinfo” subdirectory��ls�Show runinfo values��set "run number" 123�Change the run number��start�Start a run��ls /Equipment/Trigger/�Statistics�Show statistics for trigger events��stop�Stop run��help�Show available commands��
Note that ODBEdit supports “UNIX tcsh� XE "tcsh" �” command line editing. Use the tabulator to complete a directory name and the arrow keys to recall previous commands.
What next?
When the sample experiment has been compiled and started successfully, it is time to switch to a “real” experiment. As a first step, the front-end should be moved to a computer which has access to the experiment hardware. This can be a VME CPU running VxWorks� XE "VxWorks" � or a PC running Linux or Windows NT with a PC-CAMAC interface. To connect to the back-end computer, the front-end has to be started with the �h and �e flags:
frontend -h <host-name> [-e <exp-name>]
where <host-name>� XE "hostname" � is the name of the back-end� XE "back-end" � host. The experiment name <exp-name>� XE "experiment name" � only has to be specified if more than one experiment is defined int the exptab file on the back-end.
It is recommended to try first the “dummy” front-end from the sample experiment before accessing any hardware.
The next step would be to set-up a hardware trigger� XE "hardware trigger" �. Refer to � REF _Ref410199773 * MERGEFORMAT ��Appendix F: Computer Busy Logic� to learn how to set-up a “computer busy” logic. The trigger signal has to be made available to the front-end computer through an I/O unit or through an interrupt� XE "interrupt" � signal (in CAMAC also called look-at-me signal or LAM� XE "LAM" �). Since the front-end framework is hardware independent, all hardware accesses have do be done in the user part of the front-end. It is recommended to use first polling in the front-end. For that purpose code has to be inserted in the function poll_trigger_event() which checks for the availability of a new event. The readout code for the trigger events has to be inserted into read_trigger_event(). The last instruction in this routine should re-arm the hardware for a new event.
If the flag RO_ODB is defined in the equipment definition for the trigger event, a copy of the trigger event is sent to the ODB under /Equipment/Trigger/Variables periodically. The contents of the event can be checked with ODBEdit.
Once the front-end is running correctly, the user analyzer can be modified to suit the needs of the experiment. Chapter � REF _Ref410199327 \n �3.3� “� REF _Ref410199327 * MERGEFORMAT �The MIDAS Analyzer�” describes this in more detail.
Using MIDAS
This chapter describes the usage of MIDAS in more detail. It explains how to move from the sample experiment to a “real” experiment. Details of the front-end, the logger, the analyzer and the run control are covered.
It is assumed that MIDAS has been installed properly and the sample experiment is running successfully as described in Chapter � REF _Ref409322395 \n �2.1� “� REF _Ref409322395 * MERGEFORMAT �Installation�”.
Setting up a New Experiment
Defining an Experiment
Different experiments� XE "experiments" � can run simultaneously in different directories on the same computer. For an easy use each experiment is assigned a unique name which has to be specified when a MIDAS application is started. This is necessary since programs like the logger can run in several instances for different experiments.
If an experiment is only accessed locally, like for off-line analysis, it is enough to define the environment variable MIDAS_DIR � XE "environment variable:MIDAS_DIR" �to point to the directory where the experiment should run as described in Step 4 of Chapter � REF _Ref409322395 \n �2.1�. If the experiment has to be accessed remotely, like from a front-end running on another computer, the experiment has to be defined in the exptab file as described in Step 5 of Chapter � REF _Ref409322395 \n �2.1�.
Since the exptab file is kept at a system location, one has to have super-user rights to modify it. If you don’t have this, ask your system administrator to modify the exptab file for you.
To test the experiment definition, simply start ODBEdit by typing
odbedit
If MIDAS_DIR is defined, the ODB is created in that directory. This can be seen by the creation of the files ODB.SHM and SYSMSG.SHM (.ODB.SHM and .SYSMSG.SHM under UNIX) which are disk images of the shared memory sections.
The definition of MIDAS_DIR has priority over the exptab settings. If MIDAS_DIR is not defined, the exptab file is examined. If only one experiment is defined in exptab, the ODB is created immediately in the directory specified for this experiment. If several experiments are defined, ODBEdit asks to which experiment it should connect to. As an alternative one can start ODBEdit with a command line parameter specifying the experiment explicitly like
odbedit -e sample
(given that experiment “sample” has been defined) or one can define the environment variable MIDAS_EXPT_NAME� XE "environment variable:MIDAS_EXPT_NAME" � like
setenv MIDAS_EXPT_NAME sample
If the experiment is running on another computer, the hostname has to be specified as a command line parameter
odbedit -e sample -h myhost
or as an environment variable� XE "environment variable:MIDAS_SERVER_HOST" �
setenv MIDAS_SERVER_HOST myhost
This scheme is used for all MIDAS applications including the logger, front-end and analyzer.
Restricting Access to an Experiment
� XE "restricting access" �By default, everyone can connect locally or remotely to an experiment. If the access should be restricted, a password� XE "password" � can be defined which has to be supplied when a MIDAS application connects to a given experiment. To do so, define the password in ODBEdit:
[local]/>passwd�Password:<xxxx>�Retype password:<xxxx>
If one now exits ODBEdit (“quit” command) and restarts it, it asks for the password. To remove the password checking, the security sub-tree has to be deleted with ODBEdit:
[local]/>rm /Experiment/Security�Are you sure to delete the key�"/Experiment/Security"�and all its subkeys? (y/[n]) y
While the access restriction can make sense to deny access from outside to an experiment, it can be annoying for the people working directly at the back-end computer or for the front-end. To solve this problem specific hosts can be exempt from having to supply a password. To do so, they have to be defined in the rhosts� XE "rhosts" � section of the security tree:
[local]/>cd /Experiment/Security/rhosts�[local]rhosts>create int <myhost>.<domain>�[local]rhosts>ls
where <myhost>.<domain> has to be replaces by the full IP address of the host to exempt.
Creating a Front-end
If you followed Chapter � REF _Ref409332481 \n �2� “� REF _Ref409322033 * MERGEFORMAT �Quick Start�”, a basic sample front-end should be running already consisting of a system framework contained in mfe.c� XE "mfe.c" � and a user part contained in frontend.c� XE "frontend.c" �. This section describes all details of the front-end and explains how to extend the user part to suit the needs of an experiment.
Defining an Equipment
Under MIDAS, experiment hardware is structured into “equipment� XE "equipment" �”. An equipment is one or more devices which are grouped together logically or physically. Examples of equipments are a set of high voltage supplies, one or more crates of digitizing electronics like ADCs and TDCs or a set of scalers. Equipment is read out together either periodically or after a trigger signal. The data from one equipment is placed in an “event� XE "event" �” and send to the back-end computer for logging and analyzing.
To define an equipment, an equipment list in the front-end program has to be created. Here is the example equipment list for a trigger event and a scaler event from frontend.c in the sample experiment:
1	{ "Trigger", /* equipment name */�2	 1, 0, /* event ID, trigger mask */�3	 "SYSTEM", /* event buffer */�4	 EQ_POLLED, /* equipment type */�5	 "MIDAS", /* format */�6	 TRUE, /* enabled */�7	 RO_RUNNING | /* read only when running */�8	 RO_ODB, /* and update ODB */ �9	 500, /* poll for 500ms */�10	 0, /* stop run after this events */�11	 FALSE, /* log history flag */�12	 "", "", "",�13	 read_trigger_event, /* readout routine */�14	 poll_trigger_event, /* polling routine */�15	 NULL, /* init string */�	},�	�16	{ "Scaler", /* equipment name */�17	 2, 0, /* event ID, trigger mask */�18	 "SYSTEM", /* event buffer */�19	 EQ_PERIODIC, /* equipment type */�20	 "MIDAS", /* format */�21	 TRUE, /* enabled */�22	 RO_RUNNING | /* read when running */�23	 RO_TRANSITIONS | /* and on transitions */�24	 RO_ODB, /* and update ODB */ �25	 10000, /* period: 10 sec */�26	 0, /* stop run after this events */�27	 TRUE, /* log history flag */�28	 "", "", "",�29	 read_scaler_event, /* readout routine */�30	 NULL, /* polling routine */�31	 NULL, /* init string */�	},

The first section defines an event called “Trigger” with an event ID� XE "event:ID" � of one and a trigger mask of zero in line 1 and 2 and an event called “Scaler” with an event ID of two. Both the event ID and the trigger mask are placed into an event header� XE "event:header" � and identify an event uniquely. The trigger mask can also be modified dynamically by the readout routine to define the event type on an event-by-event basis. This can be used to mix “physics events” (from a physics trigger) and “calibration events� XE "calibration events" �” (from a clock for example) in one run and identify them later.
After reading both events, they are sent to a buffer called “SYSTEM� XE "system buffer" �” (line 3 and 18) on the back-end. Normally, only one event buffer is used. Several buffers are only necessary if an event builder� XE "event:builder" � receiving fragments� XE "fragments" � from different front-ends is used.
The equipment type in line 4 can have three values: EQ_PERIODIC� XE "EQ_PERIODIC" �, EQ_POLLED� XE "EQ_POLLED" � and EQ_INTERRUPT� XE "EQ_INTERRUPT" �. Periodic events� XE "events:periodic" � are read out periodically as specified by the period in the equipment list (line 25). Polled events� XE "events:polled" � are read out when the polling routine poll_trigger_event() (line 14) returns TRUE indicating that a new event is available. For performance reasons the polling routine consists of a loop checking for new events. If the loop would be infinite, the front-end could not respond to any network commands. Therefore the loop count is determined when the front-end starts so that it returns after a given time-out when no event is available. This time-out is usually 0.5 seconds as specified in line 9.
Equipment of type EQ_INTERRUPT is read out via interrupts� XE "events:interrupt" �. Since the front-end framework is hardware independent, the user part of the front-end has to include a routine for interrupt configuration. A pointer to this routine is passed to the system instead of the polling routine. The interrupt configuration routine has following declaration:
INT interrupt_configure� XE "interrupt_configure" �(INT cmd, PTYPE adr)
Four commands have to be implemented:
CMD_INTERRUPT_ENABLE to enable an interrupt
CMD_INTERRUPT_DISABLE to disable an interrupt
CMD_INTERRUPT_INSTALL to install an interrupt callback routine at address adr
CMD_INTERRUPT_DEINSTALL to de-install an interrupt.
These commands are called by the framework when needed.
Line 5 specifies the data format� XE "data format" � in which trigger events are generated. Following options are possible: MIDAS, YBOS and FIXED. The format has to agree with the way the event is composed in the user read-out routine. It tells the system how to interpret an event when it is copied to the ODB or displayed in a user-readable form. The next two sections describe how to generate events in the user routine in different formats.
Line 6 is the “enable” switch� XE "enable switch" � for trigger events. Trigger events are read-out by the front-end framework only if this switch is TRUE. By setting this to FALSE events can be disabled permanently.
In lines 7/8 and 22-24 one can specify when to read-out an event. Following options are possible (refer to the state diagram in Chapter � REF _Ref409335573 \n �1.3.6� “� REF _Ref409335573 * MERGEFORMAT �Run States�”):
RO_RUNNING: Read on state “running”
RO_STOPPED: Read on state “stopped”
RO_PAUSED: Read on state “paused”
RO_BOR: Read after begin-of-run
RO_EOR: Read before end-of-run
RO_PAUSE: Read when run gets paused
RO_RESUME: Read when run gets resumed
RO_TRANSITIONS: Read on all transitions
RO_ALWAYS: Read during all states and all transitions
These flags can be combined with the bit-wise OR operator (“|”). Trigger events in the above example are read out only when running while scaler events are read out when running and additionally on all transitions. The special flag RO_ODB tells the system to copy an event to the /Equipment/<equipment name>/Variables ODB tree once every ten seconds for diagnostic. The event contents can then be checked with ODBEdit.
Line 11and 27 specify that only scaler events should be logged in the MIDAS history system� XE "history system" �.
Lines 13 and 29 point to the user readout routines which are called upon readout of a given event.
Each time the front-end starts, it copies the equipment settings to the ODB under /Equipment/<equipment name>/Common. A hot-link is created so that some of the settings can be changed during run-time. The changes get reflected immediately into the front-end and can change its behavior. These settings are: “Enabled” flag, RO_xxx flags, “period” and “event limit� XE "event:limit" �” (line 10). When the event limit is reached, the front-end automatically stops a run.
Generating Events in FIXED Format
The FIXED format� XE "format:FIXED" � is the simplest event format. The event length is fixed and maps to a C structure which is filled by the readout routine. Since the standard MIDAS analyzer cannot work with this format, it is only recommended for experiment which use their own analyzer and want to avoid the overhead of a bank structure.
For fixed events, the structure has to be defined twice. Once for the compiler in form of a C structure and once for the ODB in form of an ASCII representation� XE "ASCII representation" �. The ASCII string is supplied to the system as the “init string” in the equipment list. Following statements would define a fixed event with two ADC and TDC values:
typedef struct {� int adc0;� int adc1;� int tdc0;� int tdc1;�} TRIGGER_EVENT;
char *trigger_event_str[] = {�"adc0 = INT : 0",�"adc1 = INT : 0",�"tdc0 = INT : 0",�"tdc1 = INT : 0",�} ASUM_BANK;
The trigger_event_str has to be defined before the equipment list and a reference to it has to be placed in the equipment list like:
...� read_trigger_event, /* readout routine */� poll_trigger_event, /* polling routine */� trigger_event_str, /* init string */�},
The readout routine could look like this:
INT read_trigger_event(char *pevent)�{�TRIGGER_EVENT *ptrg;�� ptrg = (TRIGGER_EVENT *) pevent;� ptrg->adc0 = <...>;� ptrg->adc1 = <...>;� ptrg->tdc0 = <...>;� ptrg->tdc1 = <...>;�� return sizeof(TRIGGER_EVENT);�}
The <...> statements have to be filled with code which reads the values from hardware like CAMAC.
Generating Events in MIDAS Format
� XE "format:MIDAS" �The MIDAS event format is a variable length event format. It uses “banks� XE "banks" �” as subsets of events. A bank has a name of four letters, a type like integer of float and a variable length. Usually a bank contains an array of values which belong together logically. An experiment can generate an ADC bank, a TDC bank and a bank with trigger information for example. The length of a bank can vary from event to event allowing for zero suppression� XE "zero suppression" �.
Another advantage of banks is the fact that the analyzer can add more (calculated) banks in the analysis process. After the first analysis stage, the event can contain additionally to a raw ADC bank a bank with calibrated ADC values called CADC bank for example. In this CADC bank the raw ADC values could be offset or gain corrected.
MIDAS banks are created in the front-end readout code with calls to the MIDAS library. Following routines exist:
bk_init� XE "bk_init" �(void *pevent)
Initializes a bank structure in an event. pevent is a pointer to the data area of an event which is supplied to the user readout routine.
bk_create� XE "bk_create" �(void *pevent, char *name, WORD type, void *pdata)
Creates a bank with a given name (exactly four characters) and type (see a list of possible type ID values TID_xxx in midas.h). This function returns a pointer pdata which points to the data area of the bank. The bank can be filled using this pointer.
bk_close� XE "bk_close" �(void *pevent, void *pdata)
Closes a bank previously opened with bk_create(). The pdata pointer has to be incremented to point after the last bank data.
bk_size� XE "bk_size" �(void *pevent)
returns the size in bytes of all banks including the bank headers in an event. Following code composes a event containing two ADC and two TDC values:
INT read_trigger_event(char *pevent)�{�INT *pdata;�� bk_init(pevent);�� bk_create(pevent, "ADC0", TID_INT, &pdata);� *pdata++ = <ADC0>� *pdata++ = <ADC1>� bk_close(pevent, pdata);�� bk_create(pevent, "TDC0", TID_INT, &pdata);� *pdata++ = <TDC0>� *pdata++ = <TDC1>� bk_close(pevent, pdata);�� return bk_size(pevent);�}
The <...> statements have to be filled with code which reads the values from hardware like CAMAC. Upon normal completion, the readout routine returns the event size in bytes. If the event is not valid, the routine can return zero. In this case no event is sent to the back-end. This can be used to implement a software event filter (sometimes called “third level trigger� XE "third level trigger" �”).
Generating Events in YBOS Format
� XE "format:YBOS" �The YBOS event format is also a bank format which is also used in other DAQ systems. The advantage of using this format is the fact that the recorded data can be analyzed with existing analyzers which understand the YBOS format. The disadvantage is that is has a slightly larger overhead than the MIDAS format and that it supports less bank types. An introduction to YBOS can be found under
http://www-cdf.fnal.gov/offline/ybos/ybos.html
The scheme of bank creation is exactly the same as for MIDAS events, only the routines are named differently. Following code creates an ADC0 bank in YBOS format:
INT read_trigger_event(char *pevent)�{�YBOS_BANK_HEADER *pbkh;�INT *pdata, *pbktop;�� pbktop = (INT *) pevent;� *pbktop = 0;�� ybkopen(pbktop, "ADC0", I4_BKTYPE, &pbkh,� &pbkdat);� *pdata++ = <ADC0>;� *pdata++ = <ADC1>;� ybkclose(pbktop, &pbkh, &pbkdat);�� return (*pbktop * 4);�}
A complete reference of the MIDAS and YBOS formats can be found in � REF _Ref410804226 * MERGEFORMAT �Appendix C: MIDAS Event Format� and � REF _Ref410804238 * MERGEFORMAT �Appendix D: YBOS Event Format�.
Hardware Access
The front-end framework mfe.c is completely hardware independent. All hardware access is done in the user part. Several libraries or drivers exist for various bus systems like CAMAC� XE "CAMAC" � or RS232� XE "RS232" �. They are located in the drivers directory of the MIDAS distribution. Some libraries consist only of a header file, others of a C file plus a header file. The file names consist usually of a manufacturer abbreviation and a model number. The libraries are continuously extended to cover all kinds of hardware.
Care has been taken to use standards like the ESONE standard� XE "ESONE standard" � for CAMAC routines. This way a front-end program can be moved easily from one platform to another by linking against another CAMAC library without modification of the user readout code. Existing libraries not contained in the MIDAS distribution can be used without any problem.
Hardware Parameters
It is often desirable to modify hardware parameters� XE "hardware parameters" � like discriminator levels or trigger logic which is connected to the front-end computer. Given that the according hardware can be controlled by the front-end, its parameters can be modified in an easy way using ODB hot-links.
First the parameters have to be defined in the ODB under the Settings tree for a given equipment. Let’s assume we have two discriminator levels belonging to the trigger electronics which should be controllable. Following commands define these levels in the ODB:
[local]/>cd /Equipment/Trigger/�[local]Trigger>create key Settings�[local]Trigger>cd Settings�[local]Settings>create int level1�[local]Settings>create int level2�[local]Settings>ls
The front-end can now map a C structure to these settings. In order to simplify this process, ODBEdit can automatically generate a header file containing this C structure. This file is usually called event.h� XE "event.h" �. It can be generated in the current directory with the command
[local]Settings>event
Now this file can be copied to the front-end directory and included in the front-end source code. It contains a section with a C structure of the trigger settings and an ASCII representation� XE "ASCII representation" �:
typedef struct {� INT level1;� INT level2;�} TRIGGER_SETTINGS;��#define TRIGGER_SETTINGS_STR(_name) char *_name[] = {\�"[.]",\�"level1 = INT : 0",\�"level2 = INT : 0",\�"",\�NULL }
This definition can be used to define a C structure containing the parameters in frontend.c:
#include <event.h>��TRIGGER_SETTINGS trigger_settings;��
A hot-link between the ODB values and the C structure is established in the frontend_init() routine:
INT frontend_init()�{�HNDLE hDB, hkey;�TRIGGER_SETTINGS_STR(trigger_settings_str);�� cm_get_experiment_database(&hDB, NULL);�� db_create_record(hDB, 0,� "/Equipment/Trigger/Settings",� strcomb(trigger_settings_str));�� db_find_key(hDB, 0,� "/Equipment/Trigger/Settings", &hkey);�� if (db_open_record(hDB, hkey,� &trigger_settings,� sizeof(trigger_settings), MODE_READ,� trigger_update) != DB_SUCCESS)� {� cm_msg(MERROR, "frontend_init",� "Cannot open Trigger Settings in ODB");� return -1;� }� return SUCCESS;�}
The db_create_record()� XE "db_create_record" � function re-creates the settings sub-tree in the ODB from the ASCII representation� XE "ASCII representation" � in case it has been corrupted or deleted. The db_open_record()� XE "db_open_record" � now establishes the hot-link between the settings in the ODB and the trigger_settings structure. Each time the ODB settings are modified, the changes are written to the trigger_settings structure and the callback routine trigger_update() is executed afterwards. This routine has the task to set the hardware according to the settings in the trigger_settings structure. It may look like:
void trigger_update(INT hDB, INT hkey)�{� printf("New levels: %d %d",� trigger_settings.level1,� trigger_settings.level2);�}
Of course the printf() function should be replaced by a function which accesses the hardware properly. The whole scheme can be tested by modifying the trigger values with ODBEdit:
[local]/>cd /Equipment/Trigger/Settings�[local]Settings>set level1 123�[local]Settings>set level2 456
Immediately after each modification the front-end should display the new values. The settings can be saved to a file and loaded back later:
[local]/>cd /Equipment/Trigger/Settings�[local]Settings>save settings.odb�[local]Settings>set level1 789�[local]Settings>load settings.odb
The settings can also be modified from any application just by accessing the ODB. Following listing is a complete user application which modifies the trigger level:
#include <midas.h>��main()�{�HNDLE hDB;�INT level;�� cm_connect_experiment("", "Sample", "Test",� NULL);� cm_get_experiment_database(&hDB, NULL);�� level = 321;� db_set_value(hDB, 0,� "/Equipment/Trigger/Settings/Level1",� &level, sizeof(INT), 1, TID_INT);�� cm_disconnect_experiment();�}
Following figure summarizes the involved components:

Figure � SEQ Figure * ARABIC �4��Changes in the ODB get propagated to the hardware by the front-end program����To make sure a hot-link exists, one can use the ODBEdit command sor (show open records� XE "show open records" �):
[local]Settings>cd /�[local]/>sor�/Equipment/Trigger/Settings open 1 times by ...

Creating a New Analyzer
One can either use the standard MIDAS analyzer together with PAW as described in Chapter � REF _Ref410199341 \n �3.3� “� REF _Ref410199327 * MERGEFORMAT �The MIDAS Analyzer�”. The other way is to write a complete new analyzer from scratch or using an existing analyzer package and turning it into a MIDAS consumer which receives events from the MIDAS buffer manager. This section describes the second option.
Writing the Code
Receiving events from MIDAS is very simple and consists of three steps:
Connecting to an experiment
Requesting events
Supplying a callback routine which receives these events
The code for these steps can look like this:
1	#include <stdio.h>�2	#include "midas.h"�3 �4 �5	void process_event(HNDLE hbuf, HNDLE request_id,�6	 EVENT_HEADER *pheader, void *pevent)�7	{�8	 printf("Received event #%d\r",�9	 pheader->serial_number);�10	}�11	�12	main() {�13	INT status, request_id;�14	HNDLE hbuf;�15	�16	 status = cm_connect_experiment("", "sample",�17	 "Simple Analyzer", NULL);�18	 if (status != CM_SUCCESS)�19	 return 1;�20	�21	 bm_open_buffer("SYSTEM", EVENT_BUFFER_SIZE,�22	 &hbuf);�23	 bm_request_event(hbuf, 1, TRIGGER_ALL,�24	 GET_ALL, request_id, process_event);�25	 �26	 do {�27	 status = cm_yield(1000);�28	 } while (status != RPC_SHUTDOWN &&�29	 status != SS_ABORT);�30	�31	 cm_disconnect_experiment();�32	�33	 return 0;�34	}
This program connects to experiment “Sample” on the local computer. It opens event buffer “SYSTEM” (which is the default event buffer) and requests all events with ID 1. When an event of that type is received, the serial number� XE "serial number" � of this event is printed. The lines have following meaning:
Line 2
This is the standard MIDAS header file. Make sure the compiler knows its location (usually add the -I/usr/local/include flag under UNIX and /I\midas\include under Windows NT).
Line 5/6
This is the callback routine receiving events. pheader points to the event header (for a description of its structure refer to � REF _Ref410804597 * MERGEFORMAT �Appendix C: MIDAS Event Format�) and pevent points to the data area of the event.
Line 16-19
These lines connect to the experiment “Sample” on the local computer. The declaration of the cm_connect_experiment() function is:
INT cm_connect_experiment(char *host_name,� char *exp_name,� char *client_name,� void (*func)(char*));
Where host_name� XE "hostname" � is the IP name of the host to connect to (empty if to connect to the local host), exp_name� XE "experiment name" � is the experiment name, client_name� XE "client name" � is the name of the calling program as it can be seen by others and the func routine can be supplied to read in a password if security has been enabled.
Line 21/22
The event buffer “SYSTEM” is opened� XE "bm_open_buffer" �. If successful, a non-zero handle for this buffer is returned in hbuf which can be used in the following calls.
Line 23/24
This call requests� XE "event:request" � a certain type of events. The syntax is:
INT bm_request_event(INT buffer_handle,� short int event_id,� short int trigger_mask,� INT sampling_type,� INT *request_id, � void (*func)(HNDLE,HNDLE,EVENT_HEADER*,void*));�
The buffer handle is the one obtained from bm_open_buffer. The event_id and trigger_mask select a certain type of event. Only events of that type are received. The event ID is directly compared with the event ID in the event header, while the trigger mask is bit-wise compared with the trigger mask in the event. The event is received if the event ID’s are the same and the trigger masks have at least one bit in common. To receive all events from the system buffer, values of EVENTID_ALL and TRIGGER_ALL can be specified.
The sampling type� XE "sampling type" � specifies how many events should be received. If GET_ALL� XE "GET_ALL" � is specified, all events from a given type are received. If the analyzer processes these events slower than the front-end produces them, the front-end gets automatically blocked periodically to reduce the data rate. If GET_SOME� XE "GET_SOME" � is specified, the analyzer only receives as much events as possible without blocking the front-end. If the analyzer processes events faster than the front-end produces them, the analyzer receives all events. If the analyzer is slower than the front-end, events are skipped. On some systems these different modes are called “May events� XE "events:may events" �” and “Must events� XE "events:must events" �”.
Line 26-29
This is the standard main loop in a MIDAS program� XE "cm_yield" �. Since the system is event based, a central routine has to be called periodically to receive and distribute events. If an event is received which matches a request, the according callback routine� XE "callback routine" � (in this case process_event) is called.
The loop can be exited when the network connection breaks (SS_ABORT) or the program is shut down by another program. This can be done for example with the ODBEdit command shutdown� XE "shutdown" �:
[local]/>scl		(to show all clients)�Name			Host�Simple Analyzer	pc810�ODBEdit		pc810�[local]/>shutdown "Simple Analyzer"�11:01:02 [Simple Analyzer] Program Simple Analyzer on host pc810 stopped
The parameter to cm_yield is a time-out in milliseconds. If an analyzer needs other things to do like processing keystrokes, the time-out can be set to a small value like 10ms. This causes cm_yield to return after 10ms if no event is received. The analyzer code which needs to be executed periodically can then be placed into the loop.
line 31
disconnects from the experiment. It is important to call this routine before a program stops so all network connections can be closed correctly.
After the code has been compiled, it needs to be linked against the MIDAS library� XE "MIDAS:library" � which is installed under /usr/local/lib/libmidas.a under UNIX and under c:\midas\nt\lib\midas.lib. The NT library is a shared library where midas.lib only contains references to the functions. The real code is contained in \winnt\system32\midas.dll which is needed by the application during run time. If the application is moved to another PC where MIDAS is not installed, it is enough to move midas.dll to the Windows directory on the new PC.
Debugging the Analyzer
A common problem in DAQ is a crashing analyzer which has a GET_ALL request and therefor blocks the whole system. To overcome this problem, a watchdog system� XE "watchdog system" � has been implemented. Every client attached to a buffer periodically signals that it is alive by writing the current time to a client region in the shared memory. This is done using the alarm()� XE "alarm" �() function under UNIX and a timer� XE "timer" � under Windows NT.
Whenever the process crashes or is killed, the other clients see that the crashed client does not update its time any more. In this case all requests from that client are removed from that buffer automatically to release blocked producers.
This scheme can be tested by stopping the analyzer via Control-C or the kill command when ODBEdit is running. After a time-out of 10 seconds ODBEdit considers the analyzer to be dead and removes it from the ODB and all buffers.
While the watchdog scheme works fine for normal operation, it can cause problems when running the analyzer inside a debugger. When the debugger stops the program at a break point, signals (UNIX) and timers (NT) are disabled. Since the application cannot signal that it is still alive, it gets removed from the ODB and all buffers after 10 seconds.
This problem can be solved by indicating to the other applications that the alive status of this client should not be checked. This can be done by calling the function cm_set_watchdog_params() at the begin of a program:
cm_set_watchdog_params(FALSE, 0);
The time-out (second parameter) of zero tells other applications not to do the alive test on this application.
It may now happen that a program which a disabled alive tests crashes. In this case producers might be blocked forever. The crashed application can the manually be removed with the ODBEdit command cleanup. This command removes all dead clients without checking their time-out value.
Byte Swapping
� XE "byte swapping" �Care has to be taken if the byte ordering (big endian� XE "big endian" � and little endian� XE "little endian" �) differs between front-end and back-end. This can happen for example when the front-end is a Motorola CPU (68k or PowerPC) and the back-end a DEC Alpha or Intel PC. The MIDAS RPC layer takes care of byte swapping automatically for all functions called remotely, but not for the data part of events since this can be user defined. The user code has therefore to take care for byte swapping of event data. It is recommended for performance reasons not to do this in the front-end, but in the analyzer. To swap individual words or long-words, the C macros WORD_SWAP() (16 bit), DWORD_SWAP() (32 bit) and QWORD_SWAP() (64 bit or double float) are included in the header file msystem.h. For events in MIDAS or YBOS format, functions are included in the MIDAS library which swap a complete event:
bk_swap(void *pevent)
for MIDAS events and
ybos_swap_event(DWORD *pevent)
for YBOS events. The pointer pevent points to the data area of the event. All banks are scanned and swapped according to their type. Note that this process can be time consuming and slow down the analysis process.
Writing a FORTRAN Analyzer
An analyzer can also be written in FORTRAN� XE "FORTRAN" �. The only problem is that the MIDAS library is written in C which uses different parameter passing schemes than FORTRAN. Therefore a set of “wrapper” routines have been written. These routines are contained in fmidas.c and export some of the MIDAS library functions in a way that they can be called easily from FORTRAN. The file fmidas.c needs to be compiled and linked to a FORTRAN analyzer. A additional FORTRAN include file midas.inc has been written which defines MIDAS functions and constants. By using these files, a FORTRAN analyzer looks very similar to the C analyzer:
 SUBROUTINE PROCESS_EVENT (HBUF, HREQ, HEADER, EVENT)� INTEGER*4 HBUF, HREQ, HEADER(4), EVENT(*)� WRITE (*,*) HEADER(2)� END�� PROGRAM TEST� INCLUDE 'midas.inc'� INTEGER*4 STATUS,REQUEST_ID� INTEGER*4 HBUF�� STATUS = CM_CONNECT_EXPERIMENT('','sample',�+ 'Fortran Analyzer')� IF (STATUS .NE. CM_SUCCESS) STOP��� CALL BM_OPEN_BUFFER('SYSTEM', EVENT_BUFFER_SIZE,�+ HBUF)� CALL BM_REQUEST_EVENT(HBUF, 1, TRIGGER_ALL,�+ GET_ALL, REQUEST_ID)�� DO WHILE (STATUS .NE. RPC_SHUTDOWN .AND.�+ STATUS .NE. SS_ABORT) � STATUS = CM_YIELD(1000)� END DO�� CALL CM_DISCONNECT_EXPERIMENT()�� END
The only difference is that the callback routine PROCESS_EVENT() cannot be passed to BM_REQUEST_EVENT() as a parameter like in C. Therefore the function PROCESS_EVENT() is called directly from the system. Note that this function must be present in the FORTRAN program even if no events are requested. Otherwise one would get a linker error.
Running an Experiment
The whole run control� XE "run control" � can be done with the ODBEdit program. It contains functions to start/stop/pause and resume runs. Since all parameters, configuration and status information is contained in the ODB, the whole experiment can be monitored and controlled by accessing this data with ODBEdit. Since several instances of ODBEdit can run simultaneously on different computers, users have to coordinate themselves not to interfere with each other.
Additionally, several utilities are contained in the MIDAS distribution for status and event display.
Start/stop a Run
Run transitions can be made with the ODBEdit commands start� XE "start" �, stop� XE "stop" �, pause� XE "pause" � and resume� XE "resume" �. When starting a run, the current run number� XE "run number" � is automatically incremented by one. The user is asked if this number is correct or should be changed. By pressing just return the proposed value is accepted:
[local]/>start�Run number [2]:<return to accept "2">�Are the above parameters correct? ([y]/n/q):<return to accept "y">�Starting run #2�Run #2 started
The current run information is kept in the ODB under /Runinfo� XE "runinfo" �:
[local]/>cd /Runinfo�[local]/Runinfo>ls�State 3�Run number 2�Transition in progress 0�Start Time Thu Jan 15 11:21:19 1998�Start Time binary 884866879�Stop Time Thu Jan 15 11:21:12 1998
The State is the current run state: 1 for stopped, 2 for paused and 3 for running. The Start Time binary is in standard UNIX format (seconds since 1.1.1970) and can be used by programs to calculate the duration of the current run. The Stop Time is the time when the previous run has been stopped.
When a logger writes to Exabyte tapes� XE "Exabyte tapes" �, starting and stopping of a run can take up to 60 seconds since mounting Exabyte tapes and writing EOF marks is very slow. Therefore it can happen that the run is stopping while someone on another computer tries to restart already the next run. Since this would confuse the system, a transition lock has been implemented. During a transition the Transition in progress flag� XE "transition in progress flag" � from above is set to 1 causing all other transition requests to be blocked.
If ODBEdit is killed during a transition, this flag might not be reset to 0 thus blocking all future transition request falsely. In this case the flag can be reset manually with:
[local]/>set "/Runinfo/Transition in progress" 0
The MIDAS state model is flat, there is no hierarchy of components and sub-components like in other systems. Each client can register to receive a transition. All registered clients are then contacted by the program making the transition (usually ODBEdit) and their transition callback routine is executed via RPC.
Modifying Run Parameters
Certain parameters which reflect hardware settings can be defined in the ODB. This can be special run modes� XE "run modes" � (“physics run� XE "physics run" �” / ”calibration run� XE "calibration run" �”), settings in the trigger electronics (“second level trigger enabled/disabled”) or parameters of the detector and the beam line. These parameters are set at the beginning of a run and can be used by the analyzer and by the front-end to modify the hardware (where possible). The analyzer can then for example use separate code to analyze a physics run or a calibration run differently. Run parameters are defined in the ODB under /Experiment/Run parameters. If that directory does not yet exist, it can be created with ODBEdit. Note that key names with contain blanks have to be enclosed in quotation marks:
[local]/>create key "/Experiment/Run parameters"
then one or more run parameters can be created in that directory:
[local]Run parameters>create int "Run mode"�[local]Run parameters>create string Comment
A front-end can now create a hot-link to the run mode and reprogram the trigger electronics accordingly at the beginning of a run (see Chapter � REF _Ref409501172 \n �3.1.3� “Hardware parameters”).
One can ODBEdit tell to ask for these run parameters automatically at each run start. To do so, on has to create an ODB link from the directory /Experiment/Edit on start� XE "edit on start" � to the run parameter. An ODB link is similar to a symbolic link� XE "link, symbolic" � in UNIX. It is a key which points to another key. When accessed, it returns the contents of the key it is pointing to.
[local]/>create key "Experiment/Edit on start"�[local]/>cd "Experiment/Edit on start"�[local]/>ln "/Experiment/Run parameters/Run mode" "Run mode"
When a run is started from ODBEdit, all links in /Experiment/Edit on start are scanned and read in:
[local]/>start�Run mode [0]:1�Run number [3]:<return to accept>�Are the above parameters correct?�([y]/n/q): <return to accept "y">�Starting run #2�Run #2 started
The links don’t have to point to run parameters necessarily. They can point to any ODB key including the logger settings (see next Chapter). It can make sense to create a link to the logger setting which enables/disables writing of data. A quick test run can then be made without data logging for example.
Data Logger Settings
� XE "logger settings" �The MIDAS data logger mlogger� XE "mlogger" � is controlled completely through the ODB settings under /Logger. Its general behavior can be affected and a number of logging channels can be defined. Default settings are created automatically when the logger starts the first time:
[local]/>cd /Logger/�[local]/Logger>ls�Data dir c:\online\�Message file midas.log�Write data 1�ODB Dump 0�ODB Dump File run%05d.odb�Auto restart 0�Tape message 1�Channels
They have the following meaning:
Data dir� XE "data dir" � specifies in which directory files produced by the logger should be written. This includes event data files, ODB dump files and the message file.
The message file� XE "message file" � specifies the file name for the log file which contains all messages from the MIDAS message system. The message log file is a simple ASCII file which can be viewed at any time to see a history of what happened in an experiment.
Write data� XE "write data flag" � is a global flag which turns data logging on and off for all channels. It can be set to zero temporarily to make a short test run without data logging.
The ODB Dump� XE "ODB Dump" � flag specifies if a dump of the complete ODB should be written to the file specified by ODB Dump File� XE "ODB Dump File" � at the end of each run. If the file name contains a “%”, this gets replaced by the current run number similar to the printf() C function. The format specifier %05d from above would be evaluated to a five digit run number with leading zeros like run00002.odb. The ODB dump file is in ASCII format and can be used for off-line analysis to check run parameters etc. For a description of the ASCII format see the � REF _Ref410211008 * MERGEFORMAT �Appendix G: Alphabetical MIDAS Library Reference� under db_copy().
If the auto restart� XE "auto restart" � flag is one, a new run gets automatically restarted when the previous run has been stopped by the logger due to an event or byte limit.
The tape message� XE "tape message" � flag specifies if tape messages during mounting and writing of EOF marks are generated. This can be useful for slow tapes to inform all users in a counting house about the tape status.
channels� XE "channels" � is a sub-directory which contains settings for individual channels. By default, only channel “0” is created. To define other channels, an existing channel can be copied:
[loca]]Logger>cd channels�[local]Channels>ls�0�[local]Channels>copy 0 1�[local]Channels>ls�0�1
Each channel contains two directories called Settings and Statistics:
[local]Channels>cd 0�[local]0>ls -r�Settings� Active 1� Type Disk� Filename run%05d.mid� Format MIDAS� ODB Dump 1� Log messages 0� Buffer SYSTEM� Event ID -1� Trigger Mask -1� Event limit 0� Byte limit 0� Tape capacity 0�Statistics� Events written 0� Bytes written 0� Bytes written total 0� Files written 0
The statistics part is updated by the logger during a run every few seconds. It contains the number of events and bytes written. These two values are cleared at the beginning of each run. The Bytes written total� XE "bytes written total" � and Files written� XE "files written" � entries are only reset when a tape is rewound with the ODBEdit command rewind� XE "rewind" �. The Bytes written total entry can therefore be used as an indicator if a tape is full. The Files written entry can be used off-line to determine how many files on tape have to be skipped in order to reach a specific run (using the mtape utility described in Chapter � REF _Ref410199540 \n �5.4� “� REF _Ref410199544 * MERGEFORMAT �mtape: Tape Utility�”).
The Settings part of the channel tree has following meaning:
The active flag� XE "active flag" � turns a channel on (1) or off (0). Data is only logged to channels which are active.
The type of a channel� XE "channel type" � can be Disk, Tape or FTP to write directly to a remote computer via FTP. The filename can be the name of a file for the disk mode where %05d is replaced by the current run number the same way as for the ODB dump files. In tape mode, the filename specifies a tape device� XE "tape device" � like /dev/nrmt0 under UNIX or \\.\tape0 under Windows NT. In FTP mode� XE "FTP mode" �, the filename specifies the access information for the FTP server. It has the form
host name, port number, user name, password, directory, file name
where file name can again contain %05d to be replaced by the current run number. An example could look like this:
myhost.my.domain,21,john,password,�/usr/users/data,run%05d.mid
The port number for normal FTP is 21 and 1021 for a Unitree Archive like the one used at the Paul Scherrer Institute. By using the FTP mode, a back-end computer can directly write to the archive.
The format key� XE "format key" � specifies the format in which the data is written to the logging channel. It can have four values: MIDAS, YBOS, ASCII and DUMP. The MIDAS and YBOS binary formats are described in � REF _Ref410806145 * MERGEFORMAT �Appendix C: MIDAS Event Format� and � REF _Ref410806150 * MERGEFORMAT �Appendix D: YBOS Event Format�, respectively. The ASCII format� XE "format:ASCII" � converts events into readable text format which can be easily analyzed by programs which have problems reading binary data. While the ASCII format tries to minimize the file size by printing one event per line, the DUMP format� XE "format:DUMP" � gives a very detailed ASCII representation of the event including bank information, serial numbers etc. It can be used for diagnostics.
The ODB Dump flag� XE "ODB Dump flag" � specifies if a complete dump of the ODB should be written to the logging channel before and after each run. The ODB is dumped in one long ASCII string which is contained in a begin-of-run event or a end-of-run event. These special events have an ID of EVENT_ID_BOR and EVENT_ID_EOR (0x8000 and 0x8001) and a serial number which equals to the current run number. The can be used by an analyzer in the off-line analysis to restore the ODB to its online state.
The Log messages� XE "log messages" � is a bit-field for logging system messages. If a bit in this field is set, the according system message is written to the logging channel as a message event with an ID of EVENT_ID_MESSAGE (0x8002). The bits are 1 for error, 2 for info, 4 for debug, 8 for user, 16 for log, 32 for talk, 64 for call messages and 255 to log all messages. For an explanation of these messages refer to Chapter � REF _Ref409513952 \n �3.2.5� “� REF _Ref409513952 * MERGEFORMAT �The Message System�”.
The Buffer, Event ID and Trigger Mask specify which events to log. Refer to Chapter � REF _Ref409514101 \n �3.1.4� “� REF _Ref409514101 * MERGEFORMAT �Creating a New Analyzer�” to learn how events are selected by their ID and trigger mask. To receive all events, �1 is used for the event ID and the trigger mask. By using a buffer other than the “SYSTEM” buffer, event filters� XE "event filter" � can be realized. An analyzer can request all events from the “SYSTEM” buffer, but only write acceptable events to a new buffer called “FILTERED”. When the logger requests now only events from the new buffer instead of the “SYSTEM” buffer, only filtered events get logged.
The limits Event limit� XE "event limit" �, Byte limit� XE "byte limit" � and Tape capacity� XE "tape capacity" � can be used to stop a run when set to a non-zero value. The statistics values Events written, Bytes written and Bytes written total are checked against these limits, respectively. When one of these are reached, the run gets stopped automatically by the logger.
Monitoring a Run
� XE "monitoring a run" �An experiment can be monitored by checking the statistics and status data in the ODB. A utility called mstat� XE "mstat" � comes with MIDAS which displays the most interesting data:
-v1.03- MIDAS status page ------------------------Thu Jan 15 17:56:13 1998-�Experiment: Sample Run#:3 State:Running Run time :00:00:09�Start time:Thu Jan 15 17:56:04 1998��FE Equip. Node Event Taken Event Rate[/s] Data Rate[Kb/s]�Trigger pc810 60544 5499 558.5�Scaler pc810 1 0 0.0��Logger Data dir: c:\online\ Message File: midas.log�Chan. Active Type Filename Events Taken KBytes Taken� 0 Yes Disk run00003.mid 49441 5.02e+003��Clients: Logger/pc810 Trigger Frontend/pc810 ODBEdit/pc810� MStatus/pc810�*---*
The first section displays general run information, the second section displays the statistics for the different equipment, the third section logging information and the last section shows a list of all active clients. This information can be found in the ODB in the directories /Runinfo, /Equipment/<equipment name>/Statistics, /Logger and /System/Clients.
If the front-end sends event copies to the ODB (via the RO_ODB flag), they can be checked under the Variables tree� XE "variables" �:
[local]/>cd /Equipment/Trigger/Variables�[local]Variables>ls�ADC0� 1378� 980� 797� 398� 3271� 1322� 1227� 1725�TDC0� 3289� 2911� 3883� 4065� 2784� 3626� 1130� 2691
As can be seen the trigger event contains two banks named ADC0 and TDC0 which contain eight values produced by the front-end of the sample experiment.
The Message System
The MIDAS message system� XE "message system" � uses a dedicated buffer called “SYSMSG” to receive and distribute messages. Messages are produced by the MIDAS system if an error occurs and for user information like when a run starts or stops.
Messages are received by ODBEdit where they are just displayed and by the MIDAS logger which writes them to the MIDAS log file (usually midas.log in the data directory).
Users can create messages interactively with the ODBEdit command msg. Since they are logged in the MIDAS log file with the current date and time, they can be used as an electronic log book� XE "log book, electronic" �.
Users can communicate to each other with the ODBEdit chat� XE "chat" � command. This brings ODBEdit in a mode which is similar to the UNIX talk� XE "talk" � command. Each entered line is converted to a message and distributed. All other users running ODBEdit see these messages. This can be helpful to coordinate users which control the same experiment from different locations.
The MIDAS Analyzer
Users can write their own analyzer from scratch (see Chapter � REF _Ref409514101 \n �3.1.4� “� REF _Ref409514101 * MERGEFORMAT �Creating a New Analyzer�”) or use the standard MIDAS analyzer� XE "MIDAS:analyzer" � framework which uses the HBOOK package for histogramming. Using the MIDAS analyzer framework has following advantages:
Events are received automatically, only a user routine has to be written to process the events. This concept is similar to the front-end.
The analyzer is structured into “stages”, where each stage analyzes a part of the event and adds some calculated data to it which can be read by later stages. This simplifies the design of complex analyzers.
The analyzer framework can receive events from a MIDAS buffer (online analysis) or from a file (off-line-analysis) without recompilation.
The analyzer framework can produce output files which may contain a combination of raw and analyzed data. Output files can be in different formats like HBOOK RZ files which can be directly analyzed with PAW.
An ODB dump contained in a data file can be retrieved and copied to the current ODB. This ensures that the same configuration values are used online and off-line. Additionally, parameters can be overloaded from off-line configuration files.
Several files can be analyzed off-line each having its own configuration file.
While HBOOK histograms have to be booked and filled manually from the user code, N-tuples can be booked automatically from one or more banks. This works also online where “live” N-tuples can be used to monitor an experiment with PAW.
The following paragraphs explain these features in more detail and show how to use them.
Multi Stage Concept
In order to make data analysis more flexible, a multi-stage� XE "stage, analyzer" � concept has been chosen for the analyzer. A raw event is passed through several stages in the analyzer, where each stage has a specific task. The stages read part of the event, analyze it and can add the results of the analysis back to the event. Therefore each stage in the chain can read all results from previous stages.
The first stages in the chain typically deal with data calibration, while the last stages contain the code which produces “physical” results like particle energies etc. The multi stage concept allows collaborations of people to use standard modules for the calibration stages which ensures that all members deal with the identical calibrated data, while the last stages can be modified by individuals to look at different aspects of the data.
The stage system makes use of the MIDAS bank system. Each stage can read existing banks from an event and add more banks with calculated data. Following picture gives an example of an analyzer consisting of three stages where the first two stages make an ADC and a MWPC calibration, respectively. They add a “Calibrated ADC” bank and a “MWPC” bank which are used by the third stage which calculates angles between particles:

Figure � SEQ Figure * ARABIC �5��Example of a three stage analyzer����Since data is contained in MIDAS banks, the system knows how to interpret the data. N-tuples can be booked automatically from any bank with a simple switch in the ODB.
The user code for each stage is contained in a “module� XE "module" �”. Each module has a begin-of-run, end-of-run and an event routine. The BOR routine is typically used to book histograms, the EOR routine can do peak fitting etc. The event routine is called for each event which is received online or off-line.
Analyzer Parameters
� XE "analyzer parameters" �Each analyzer module can contain a set of parameters to control the behavior of the module or as configuration and calibration data. These parameters are kept in the ODB under /Analyzer/Parameters/<module name> and mapped automatically to C structures in the analyzer modules. The analyzer can therefore be controlled by changing these values in the ODB.
In order to keep the ODB variables and the C structure definitions matched, the ODBEdit command event generates the file event.h� XE "event.h" � which contains C structures for all analyzer parameters. If this file is included in all analyzer source code files, the parameters can be accessed under the name <module name>_param.
Writing the Code
An example analyzer is contained in the examples/experiment directory of the MIDAS distribution. The MIDAS analyzer framework mana.c� XE "mana.c" � is compiled and linked together with the main analyzer file analyzer.c� XE "analyzer.c" � which contains a list of analyzer modules. The source code files for the individual modules are adccalib.c, adcsum.c and scaler.c.
analyzer.c
The file analyzer.c contains the PAW common section which is defined with
PAWC_DEFINE� XE "PAWC_DEFINE" �(8000000);
This defines a section of 8 megabytes or 2 megawords. In case many histograms are booked in the user code, this value probably has to be increased in order not to crash HBOOK. If the analyzer runs online, the section is kept in shared memory. In case the operating system only supports a smaller amount of shared memory, this value has to be decreased.
Next, the file contains the analyzer name
char *analyzer_name = "Analyzer";
under which the analyzer appears in the ODB (via the ODBEdit command scl). This also determines the analyzer root tree name as /Analyzer. In case several analyzers are running simultaneously (in case of distributed analysis on different machines for example), they have to use different names like Analyzer1 and Analyzer2 which then creates two separate ODB trees /Analyzer1 and /Analyzer2 which is necessary to control the analyzers individually.
Following structures are then defined in analyzer.c: runinfo, global_param, exp_param and trigger_settings. They correspond to the ODB trees /Runinfo, /Analyzer/Parameters/Global, /Experiment/Run parameters and /Equipment/Trigger/Settings, respectively. The mapping is done in the analyzer_init() routine. The contents of these structures can be used by any analyzer module (via an extern statement). If the experiment parameters contain an flag to indicate the run type for example, the analyzer can analyze calibration and data runs differently.
The module declaration section in analyzer.c defines two “chains” of modules, one for trigger events and one for scaler events. The framework calls these according to their order in these lists. The modules of type ANA_MODULE are defined in their source code file. The enabled flag for each module is copied to the ODB under /Analyzer/Module switches. By setting this flag zero in the ODB, modules can be disabled temporarily.
Next, all banks have to be defined. This is necessary because the framework automatically books N-tuples for all banks at startup before any event is received. Online banks which come from the front-end are first defined, then banks created by the analyzer:
 ...� /* online banks */� { "ADC0", TID_DWORD, N_ADC, NULL },� { "TDC0", TID_DWORD, N_TDC, NULL },�� /* calculated banks */� { "CADC", TID_FLOAT, N_ADC, NULL },� { "ASUM", TID_STRUCT, sizeof(ASUM_BANK),� asum_bank_str },
The first entry is the bank name, the second the bank type. The type has to match the type which is created by the front-end. The type TID_STRUCT is a special bank type. These banks have a fixed length which matches a C structure. This is useful when an analyzer wants to access named variables inside a bank like asum_bank.sum. The third entry is the size of the bank in bytes in case of structured banks or the maximum number of items (not bytes!) in case of variable length banks. The last entry is the ASCII representation of the bank in case of structured banks. This is used to create the bank on startup under /Equipment/Trigger/Variables/<bank name>.
The next section in analyzer.c defines the ANALYZE_REQUEST list. This determines which events are received and which routines are called to analyze these events. A request can either contain an “analyzer routine” which is called to analyze the event or a “module list” which has been defined above. In the latter case all modules are called for each event. The requests are copied to the ODB under /Analyzer/<equipment name>/Common. Statistics like number of analyzed events is written under /Analyzer/<equipment name>/Statistics. This scheme is very similar to the front-end Common and Statistics tree under /Equipment/<equipment name>/. The last entry of the analyzer request determines the HBOOK buffer size for online N-tuples� XE "N-tuples:online" �.
The analyzer_init() and analyzer_exit() routines are called when the analyzer starts or exits, while the ana_begin_of_run() and ana_end_of_run() are called at the beginning and end of each run. The ana_end_of_run() routine in the example code writes a run log file runlog.txt which contains the current time, run number, run start time and number of received events.
<module>.c
Each module source code file defines itself in a ANA_MODULE structure which contains the module name, author, callback routines for events and run transitions, and a reference to the analyzer parameters for this module. In the BOR callback usually histograms are defined. The event routine reads banks from the event via bk_locate(), does its calculations, fills histograms and then creates calculated banks with bk_create()/bk_close() similar like the front-end. If a module returns 0 instead of SUCCESS, the event is not written to the output. This way event filtering� XE "event filter" � might be implemented.
To create new calculated values and parameters for an analyzer module, they first have to be created in the ODB. To create the calculated value new_sum in bank ASUM for module ADC summing, one enters in ODBEdit:
[local]/>cd /Equipment/Trigger/Variables/ASUM�[local]ASUM>cr float "New sum"
The parameter offset for module ADC summing is created with:
[local]/>cd /Analyzer/Parameters/ADC summing�[local]ADC summing>cr float Offset
The command event now creates event.h with these structures:
typedef struct {� float sum;� float new_sum;�} ASUM_BANK;��typedef struct {� float adc_threshold;� float offset�} ADC_SUMMING_PARAM;
The ASCII representations of these structures in event.h are used to create the ODB entries if they are not present. The new variables can now be used in the summing module like:
ASUM_BANK *asum;�� asum->new_sum = ... - adc_summing_param->offset;
Online Usage
Compile the analyzer as described under Step 4 in Chapter � REF _Ref409859190 \n �2.1� “� REF _Ref409859192 * MERGEFORMAT �Installation�”. To run the analyzer online, enter:
analyzer [-h <host name>] [-e <exp name>]
where <host name> and <exp name> are optional parameters to connect the analyzer to a remote back-end computer. This attaches the analyzer to the ODB, initializes all modules, creates the PAW shared memory and starts receiving events from the system buffer. Then start PAW and connect to the shared memory� XE "shared memory" � and display its contents:
PAW > global_s onln�PAW > hist/list� 1 Trigger� 2 Scaler� 1000 CADC00� 1001 CADC01� 1002 CADC02� 1003 CADC03� 1004 CADC04� 1005 CADC05� 1006 CADC06� 1007 CADC07� 2000 ADC sum
For each equipment, a N-tuple is created with a N-tuple ID equal to the event ID. The CADC histograms are created from the adc_calib_bor() routine in adccalib.c. The N-tuple contents is derived from the banks of the trigger event. Each bank has a switch under /Analyzer/Bank switches. If the switch is on (1), the bank is contained in the N-tuple. The switches can be modified during runtime causing the N-tuples to be rebooked. The N-tuples can be plotted with the standard PAW commands:
PAW > nt/print 1�...�PAW > nt/plot 1.sum�PAW > nt/plot 1.sum cadc0>3000

Figure � SEQ Figure * ARABIC �6��PAW output for online N-tuples����
While histograms contain the full statistics of a run, N-tuples are kept in a ring-buffer. The size of this buffer is defined in the ANALYZE_REQUEST structure as the last parameter. A value of 10000 creates a buffer which contains N-tuples for 10000 events. After 10000 events, the first events are overwritten. If the value is increased, it might be that the PAWC size (PAWC_DEFINE in analyzer.c) has to be increased, too. An advantage of keeping the last 10000 events in a buffer is that cuts can be made immediately without having to wait for histograms to be filled. On the other hand care has to be taken in interpreting the data. If modifications in the hardware are made during a run, events which reflect the modifications are mixed with old data. To clear the ring-buffer for a N-tuple or a histogram during a run, the ODBEdit command
[local]/>hi analyzer <id>
where <id> is the N-tuple ID or histogram ID. An ID of zero clears all histograms� XE "clear histograms" � but no N-tuples.
The analyzer has two more ODB switches of interest when running online. The /Analyzer/Output/Histo Dump flag� XE "histo dump flag" � and /Analyzer/Output/Histo Dump Filename determine if HBOOK histograms are written after a run. This file contains all histograms and the last ring-buffer of N-tuples. It can be read in with PAW:
PAW > hi/file 1 run00001.rz�PAW > ldir
The /Analyzer/Output/Clear histos flag� XE "clear histos flag" � tells the analyzer to clear all histograms and N-tuples at the beginning of a run. If turned off, histograms� XE "histograms, accumulated" � can be accumulated over several runs.
Off-line Usage
The analyzer can be used for off-line analysis� XE "off-line analysis" � without recompilation. It can read from MIDAS binary files� XE "MIDAS:binary files" � (*.mid), analyze the data the same way as online, and the write the result to an output file in MIDAS binary format, ASCII format or HBOOK RZ format.
If written to a RZ file� XE "RZ file" �, the output contains all histograms and N-tuples as online, with the difference that the N-tuples contain all events, not only the last 10000. The contents of the N-tuples can be a combination of raw event data and calculated data. Banks can be turned on and off in the output via the /Analyzer/Bank switches flags. Individual modules can be activated/deactivated via the /Analyzer/Module switches flags.
The RZ files can be analyzed and plotted with PAW. Following flags are available when the analyzer is started off-line:
-i [filename1] [filename2] ...
Input file name(s). Up to ten different file names can be specified in a -i statement. File names can contain the sequence “%05d” which is replaced with the current run number in conjunction with the -r flag. Following filename extensions are recognized by the analyzer: .mid (MIDAS binary), .asc (ASCII data), .mid.gz (MIDAS binary gnu-zipped) and .asc.gz (ASCII data gnu-zipped). Files are un-zipped on-the-fly.
-o [filename]
Output file name. The file names can contain the sequence “%05d” which is replaced with the current run number in conjunction with the -r flag. Following file formats can be generated: .mid (MIDAS binary), .asc (ASCII data), .rz (HBOOK RZ file), .mid.gz (MIDAS binary gnu-zipped) and .asc.gz (ASCII data gnu-zipped). For HBOOK files, CWNT� XE "N-tuples:column-wise" � are used by default. RWNT� XE "N-tuples:row wise" � can be produced by specifying the -w flag. Files are zipped on-the-fly.
-r [range]
Range of run numbers to be analyzed like -r 120 125 to analyze runs 120 to 125 (inclusive). The -r flag must be used with a “%05d” in the input file name.
-n [count]
Analyze only count events. Since the number of events for all event types is considered, one might get less than count trigger events if some scaler or other events are present in the data.
-n [first] [last]
Analyze only events with serial numbers between first and last.
-n [first] [last] [n]
Analyze every n-th event from first to last.
-c [filename1] [filename2] ...
Load configuration file name(s) before analyzing a run. File names may contain a “%05d” to be replaced with the run number. If more than one file is specified, parameters from the first file get superseded from the second file and so on. Parameters are stored in the ODB and can be read by the analyzer modules. They are conserved even after the analyzer has stopped. Therefore, only parameters which change between runs have to be loaded every time. To set a parameter like /Analyzer/Parameters/ADC summing/offset one would load a configuration file which contains:
[Analyzer/Parameters/ADC summing]�Offset = FLOAT : 123
Loaded parameters can be inspected with ODBEdit after the analyzer has been started.
-p [param=value]
Set individual parameters to a specific value. Overrides any setting in configuration files. Parameter names are relative to the /Analyzer/Parameters directory. To set the key /Analyzer/Parameters/ADC summing/offset to a specific value, one uses -p “ADC summing/offset”=123. The quotation marks are necessary since the key name contains a blank. To specify a parameter which is not under the /Analyzer/Parameters tree, one uses the full path (including the initial "/") of the parameter like -p “/Experiment/Run Parameters/Run mode”=1.
-w
Produce row-wise N-tuples� XE "N-tuples:row wise" � in output RZ file. By default, column-wise N-tuples are used.
-v
Convert only input file to output file. Useful for format conversions. No data analysis is performed.
-d
Debug flag when started the analyzer from a debugger. Prevents the system to kill the analyzer when the debugger stops at a breakpoint.

Troubleshooting
Crashed Front-end
If the front-end crashes� XE "frontend:crashed" � � XE "crashed front-end" �due to malfunction code in the event readout routine, it normally disconnects the TCP connection from the back-end. In this case it can be simply restarted. If the run is still going on, the front-end automatically enters the running state and continues sending events. The only problem might be that the serial number of the events start again at one.
If the front-end runs on an operating system which does not gracefully close down the TCP connection (this is true for VxWorks and MS-DOS), the back-end still assumes that the front-end is alive. If the front-end is then restarted, it won’t be able to open the statistics record since it can only be open by one front-end.
To solve this problem, watchdog messages are sent over the network between the back-end and the front-end to insure that the front-end is alive. If the front-end does not respond after 30 seconds, the connection is aborted by the back-end automatically. Therefore the best strategy to recover from a crashed front-end is to wait 30 seconds until the watchdog period expires. Then the front-end can be restarted safely.
Corrupt ODB
The ODB contents is kept in shared memory. When all clients exit, it is written to a disk file (ODB.SHM) where it is loaded next time a new client starts. This ensures persistency even if the computer gets rebooted in between.
Since the ODB is mapped to the address space of all local clients, they might overwrite some of the ODB contents if they contain malfunctioning code. This is especially true for user written analyzers which write over array boundaries etc. If this happens, the ODB contents might get corrupted. This leads to situation where ODBEdit displays strange contents or even crashes. In worst case ODBEdit won’t start any more with an error “ODB full”� XE "ODB full" � or similar.
To solve the problem, the disk file ODB.SHM (.ODB.SHM under UNIX) must be deleted. If ODBEdit is then restarted, the ODB is empty except the /System entry which is created when ODBEdit starts. To restore the previous ODB contents, the file last.odb� XE "last.odb" � can be loaded into the ODB. This ASCII ODB dump file gets written after each run in the data directory by the logger. This file represents the exact ODB state after the last run. The contents of this file might be loaded back from this file with ODBEdit:
cd <data directory>�odbedit�[local]/>load last.odb
Any changes in the ODB after the last run has been stopped are not contained in this file and have to be applied manually.
Tape Problems
Tapes drives can produce write errors when using bad tapes or when the write heads are dirty. The logger then tries to stop the run, even if the last events cannot be written to tape. It is then recommended to rewind the tape with the ODBEdit rewind command, clean the tape heads with a cleaning cartridge and start a new tape. It also has to be checked that the problems don’t arise from the SCSI bus because of wrong termination or too many devices on the bus.
The logger releases the tape after a run has been stopped. Experienced users might use the mtape� XE "mtape" � utility to manipulate the tape between runs. If the tape contains a useless run which should be overwritten, it might be spooled back with the bsf command of the mtape utility.
If a new tape is inserted into a tape drive which contains already some data, the tape is spooled forward to the end of the recorded data. If the tape should be overwritten, it has to be erased manually with the mtape utility by writing an EOF directly at the beginning of the tape.
The Slow Control System
MIDAS contains a slow control system� XE "slow control system" � which can be used to control high voltages, beam lines, temperature stabilization devices etc. It consists of slow control front-ends and control programs. Following chapters describe how to use the slow control system and how to write front-end and control programs.
Concept
Instead of talking directly to each other, front-ends and control programs exchange information through the ODB. Each slow control equipment gets a corresponding ODB tree under /Equipment. This tree contains variables needed to control the equipment as well as variables measured from the equipment. In case of a high voltage equipment this is a Demand array� XE "demand array" � with contains voltages to be set, a Measured array� XE "measured array" � which contains read back voltages and a Current array which contains the current drawn from each channel. To change the voltage of a channel, a control program writes to the Demand array the desired value. This array is connected to the high voltage front-end via a ODB hot-link� XE "hot-link" �. Each time it gets modified, the front-end receives a notification and sets the new value. In the other direction the front-end continuously reads the voltage and current values from all channels and updates the according ODB arrays if there has been a significant change.
This design has the drawback that the ODB presents a single point of failure, therefore it is not recommended to use this system to control systems which need redundancy. On the other hand it has certain advantages:
The control program does not need any knowledge of the front-ends, it only talks to the ODB.
The control variables only exist at one place which guarantees consistency between all clients.
Basic control can be done through ODBEdit without the need of a special control program.
A special control program can be testes without having a front-end running.
In case of n front-ends and m control programs, only n+m network connections are needed instead of n*m connection for point-to-point connections.
Since all slow control values are contained in the ODB, they get automatically dumped to the logging channels.
The slow control front-ends use the same framework as the normal front-ends and behave similar in many respects. They also create periodic events which contain the slow control variables and are logged together with trigger and scaler events. The only difference is that a routine is called periodically from the framework which has the task to read channels and to update the ODB.
To access slow control hardware, a two layer driver concept is used. The upper layer is a “class driver� XE "class driver" �”, which establishes the connection to the ODB variables and contains high level functionality like channel limits, ramping etc. It uses a “device driver� XE "device driver" �” to access the channels. These drivers implement only very simple commands like “set channel” and “read channel”. The device drivers themselves can use bus drivers like RS232� XE "RS232" � or GPIB� XE "GPIB" � to control the actual device.

Figure � SEQ Figure * ARABIC �7��Class driver and Device driver in the slow control system����
The separation into class and device drivers has the advantage that it is very easy to add new devices, because only the simple device drivers needs to be written. All higher functionality is inherited from the class driver. The device driver can implement richer functionality, depending on the hardware. For some high voltage devices there is a current read-back for example. This is usually reflected by additional variables in the ODB, i.e. a Current array.
A front-end equipment uses exactly one class driver, but a class driver can use more than one device driver. This makes it possible to control several high voltage devices for example with one front-end in one equipment. The number of channels for each device driver is defined in the slow control front-end. Several different equipments with different class drivers can be defined in one front-end.
Writing a Slow Control Front-end
The slow control front-end usually does not contain any user code. It only contains the equipment definition, which defines the event ID, the readout period etc. Instead of a polling routine it contains a pointer to the class driver. Class drivers have the naming convention cd_xxx.c for the source code file and cd_xxx.h for the header file. They are in the drivers directory of the MIDAS distribution.
To use them, the header file has to be included in the front-end. Then a reference to the class driver main routine (cd_hv()) and readout routine (cd_hv_read()) is placed in the equipment definition:
EQUIPMENT equipment[] = {�� { "HV", /* equipment name */� 3, 0, /* event ID, trigger mask */� "SYSTEM", /* event buffer */� EQ_SLOW, /* equipment type */� "FIXED", /* format */� TRUE, /* enabled */� RO_RUNNING | /* read when running */� RO_TRANSITIONS, /* and on transitions */� 60000, /* read every 60 sec */� 0, /* event limit */� 1, /* log history */� "", "", "",� cd_hv_read, /* readout routine */� cd_hv, /* class driver main routine */� NULL, /* init string */� hv_driver, /* device driver list */� },�� { "" }�};�
The readout routine is called to generate an event and to send it to the “SYSTEM” buffer. The hv_driver list from above is a device driver list which defines which device driver to use and for how many channels. It is also defined in the front-end:
DEVICE_DRIVER hv_driver[] = {� { "LRS1440", lrs1440, 32 },� { "CAEN170A", caen170a, 16 },� { "" }�};
This defines that the LeCroy 1440 driver should be used for the first 32 channels and the CAEN 170A driver for the last 16 channels. A Demand, Measured and Current array of size 48 is created in the ODB. Because the LeCroy HV doesn’t support current read-back, the Current array contains zero for the first 32 entries.
Using the Slow Control System
An example slow control front-end is supplied in the examples/slowcont directory of the MIDAS distribution. To get started without a real high voltage device, a “null” driver has been written. Instead of writing to a device, it writes the demand values to an internal array and reads them back from there. The file frontend.c in the example uses the null driver together with the high voltage class driver and the multimeter class driver (cd_multi). When the front-end is started, it creates two equipment trees HV and Multimeter in the ODB. The Variables sub-tree contains the slow control variables. Writing to the Demand array causes the front-end to set a channel to that value. The value is then copied back to the Measured array:
[local]/>cd /Equipment/HV/Variables�[local]Variables>ls Measured�Measured� 0� 0� 0� …�[local]Variables>set Demand[1] 123�[local]Variables>ls Measured�Measured� 0� 123� 0� …
Note that the ODB->FE and FE->ODB counters on the slow control front-end status page are incremented by this operation indicating that the front-end got a new demand value and that it updated the measured values.
The high voltage class driver creates an additional /Equipment/HV/Settings tree which contains following entries:
Channels
Contains the channel assignment from the hv_driver list.
Names
Contains names for all channels. These names are displayed by the HVEdit program. A name can contain a group in the form <group>%<name>. This causes HVEdit to group channels with the same group together. Possible groups could be “Beam counters”, “Calorimeter” etc. Names can be modified with ODBEdit or with the Configure button in HVEdit.
Update Threshold Measured/Current
The update threshold is used by the class driver to avoid unnecessary ODB updates when the value of a channel changes only a small amount. The Measured and Current arrays are only updated when a channel changes more than the defined threshold. A value of 2 volts is the default.
Voltage Limit
The voltage limit restricts the range of demand values. If a demand value higher than the voltage limit is requested, the voltage limit is used to set the channel.
Current Limit
The current limit (usually in units of µA) is forwarded to the high voltage device. If supported by the device, the value limits the maximum output current.
Ramping Speed
The high voltage class driver supports “ramping”. If set to a non-zero value, the ramping speed limits the maximum voltage change in volts per second. If set to 100 for example, the class driver slowly increases or decreases the channel voltage by 100 volts per second.
Devices
This sub-tree contains configuration parameters for each device driver. Usually device hardware addresses are stored here.
The Multimeter class driver can be used with PC plug-in ADC and DAC boards to measure and generate analog signals. It supports input and output channels. Additionally to Names and Thresholds, it contains Offset and Factor arrays which can be used to convert voltages to physical units.
The HVEdit Program
To control the high voltage system, the program HVEdit� XE "HVEdit" � can be used under Windows 95/NT. It can be used to set channels, save and load values from disk and print them. The program can be started several times even on different computers. Since they are all linked to the same ODB arrays, the demand and measured values are consistent between them at any time. HVEdit is started from the command line:
hvedit [-h <host name>] [-e <exp name>]
where <host name> and <exp name> are optional parameters to connect HVEdit to a remote back-end computer.
The usage of HVEdit is explained when the Help button is pressed.
Writing a Control Program
To change the demand values of the slow control system, it is enough to write to the ODB. An analyzer can for example increment a high voltage channel with following code:
HNDLE hDB;�float demand[16];�INT size;�� cm_get_experiment_database(&hDB, NULL);� � /* get current demand values */� size = sizeof(demand);� db_get_value(hDB, 0,� "/Equipment/HV/Variables/Demand", demand,� &size, TID_FLOAT); �� /* increment value */� demand[3] += 100;�� /* write back demand values */� db_set_value(hDB, 0,� "/Equipment/HV/Variables/Demand", demand,� size, 16, TID_FLOAT);
The call to db_get_value()� XE "db_get_value" � retrieves the current array of demand values. Channel #3 is then incremented by 100 Volts. The modified demand array is then written back to the ODB with the call to db_set_value()� XE "db_set_value" �.
HVEdit
The source code of HVEdit is contained in the nt\hvedit directory of the MIDAS distribution. It is written with Visual C++ using the Microsoft Foundation Classes (MFC). It implements some C++ wrapper classes for the MIDAS library (MExperiment, MHostDlg, MPasswdDlg, and Mkey) which can be used in other control applications. The main code is contained in HVEDIDLG.CPP. It contains the line
m_RootKeyName = "/Equipment/HV";
which defines the equipment to control. If this is changed, HVEdit can be used to control any equipment which implements Demand and Measured arrays.
Utilities
Several command line utilities have been written. Their source code is in the utils directory. The usage is explained in the following chapters.
odbedit: Online Database Editor
The Online Database Editor (ODBEdit � XE "odbedit" �) can be used to display and modify the contents of the online database. It contains additional commands for run control.
Syntax
odbedit [-h hostname] [-e experiment] [-d ODB subtree] [-c command] [-c @command file]
Options
-h hostname
Specifies host to connect to. Must be a valid IP host name. This option supersedes the MIDAS_SERVER_HOST environment variable.
-e experiment
Specifies the experiment to connect to. This option supersedes the MIDAS_EXPT_NAME environment variable.
-d ODB subtree
Causes ODBEdit to perform an initial cd subtree to start in a directory other than the root directory. This can be helpful in conjunction with the -c flag.
-c command
Perform a single command. Can be used to perform operations in script files. To stop a run from the command line, enter
odbedit -c stop
-c @command file
Read ODBEdit commands from a command file and execute them.
Description
ODBEdit is the MIDAS run control program. It has a simple command line interface with command line editing similar to the UNIX tcsh shell. Following edit keys are implemented:
Backspace	Erase character left from cursor�Delete/Ctrl-D	Erase character under cursor�Ctrl-W/Ctrl-U	Erase current line�Ctrl-K	Erase line from cursor to end�Left arrow/Ctrl-B	Move cursor left�Right arrow/Ctrl-F	Move cursor right�Home/Ctrl-A	Move cursor to beginning of line�End/Ctrl-E	Move cursor to end of line�Up arrow/Ctrl-P	Recall previous command�Down arrow/Ctrl-N	Recall next command�Ctrl-F	Find most recent command which starts with�	current line�Tab/Ctrl-I	Complete directory. The command�	ls /Sy<tab> yields to ls /System.
ODBEdit treats the hierarchical online database very much like a file system. Most commands are similar to UNIX file commands like ls, cd, chmod, ln etc.
The help command displays a short description of all commands.
�mstat: Status Display
The mstat utility� XE "mstat utility" � displays the current status of an experiment.
Syntax
mstat	[-h hostname] [-e experiment] [-l] [-w]�[-f filename] [-c compose]
Options
-h hostname
Specifies host to connect to. Must be a valid IP host name. This option supersedes the MIDAS_SERVER_HOST environment variable.
-e experiment
Specifies the experiment to connect to. This option supersedes the MIDAS_EXPT_NAME environment variable.
<to be completed>
Description
<to be written>
�mdump: Event Dump
The mdump utility� XE "mdump utility" � displays the contents of events from the online data stream or from log files.
Syntax
mdump	[-h hostname] [-e experiment]�[-i event ID] [-b bank name]�[-l #] [-w #] [-m mode] [-g get mode]�[-f format] [-s] [-p path] [-t data type]�[-c compose]
Options
-h hostname
Specifies host to connect to. Must be a valid IP host name. This option supersedes the MIDAS_SERVER_HOST environment variable.
-e experiment
Specifies the experiment to connect to. This option supersedes the MIDAS_EXPT_NAME environment variable.
<to be completed>
Description
<to be written>
�mtape: Tape Utility
The mtape utility� XE "mtape utility" � is the MIDAS tape utility. It can be used to perform operations on magnetic tape devices.
Syntax
mtape [-f tape_device] command [count]
Options
-f tape_device
Specifies the magnetic tape device.
command [count]
Specifies the command to execute with an optional count.
Description
The mtape utility is similar to the UNIX mt utility and has the same command line syntax. The difference to the mt utility is that it also runs under Windows NT and has two additional commands.
If you do not specify a tape name with the -f flag, the TAPE environment variable is used; if TAPE does not exist, mtape uses the /dev/nrmt0 device under UNIX and \\.\tape0 under Windows NT. Note that tape_device must refer to a raw (not block) tape device. By default, mtape performs the requested operation once. Operations can be performed more than once by specifying count.
The following commands are available:
eof, weof
Writes count End-of-File marks at the current position on the tape.
fsf
Forward spaces count files.
fsr
Forward spaces count records.
bsf
Backspaces count files.
bsr
Backspaces count records.
rewind
Rewinds the tape (count is ignored).
offline
Rewinds the tape and places the tape unit off-line (count is ignored).
online
Places the tape online (count is ignored).
seod
Space to end of recorded data. Not all SCSI tape drives support functionality.
status
Prints status information about the tape unit.
Following commands only work with tapes written in MIDAS format:
dir
List next count runs on tape.
copy
Copy next count runs to disk
Note that the MIDAS logger releases the tape device between runs. A run which has been written to tape and contains no useful data can therefore be overwritten if the tape is spaced back one file just after the run.
Because the MIDAS logger keeps statistics about what is written to a tape (under /Logger/Channels/<n>/Statistics/Bytes written total), it is important to rewind a tape with the ODBEdit command rewind which resets this counter automatically and not with the mtape utility.
�mhist: Data History Display
The mhist utility� XE "mhist utility" � displays values from the MIDAS history system.
Syntax
mhist	[-e event ID] [-v variable name]�[-i index] [-h hours] [-d days]�[-t interval]
Options
-e event ID
Specifies the event ID to display. Event IDs are defined by the EQUIPMENT list in the front-end.
-v variables name
Specifies the variable name to display. For events of FIXED format, the name is defined under /Equipment/<name>/Variables, for events in MIDAS or YBOS format the variable name equals the bank name. The -i flag must be used if banks contain more than one value.
-i index
Variable index. Must be used if the variable specified by the -v flag is an array. Indices start at zero.
-h hours
Specifies how many hours into the past history should be displayed.
-d days
Specifies how many days into the past history should be displayed.
-t interval
Specifies the minimum time between two displayed records. This flag can be used to skip records. A value of -t 3600 displays one value for each hour.
Description
The mhist utility reads records from the MIDAS history files. These files are generated in the data directory for the equipment which has the log history flag on. One history file is created per day by the MIDAS logger which has the name YYMMDD.hst (Year-Month-Day). Two index files are created with the history file called *.idx and *.idf. In case the index files are corrupt or missing, they are re-created by starting mhist. Mare sure mhist is started in the directory which contains the *.hst files.
If mhist is started without parameters, it searches for the most recent history file and displays a list of all events and variables of that file. The user can then interactively select what to display.
If the -e flag is specified without the -v flag, all variables from that event are displayed. The output contains then a heading line with the variable names followed by a table with one column for each variable. The output is tabulator-separated so it can directly be imported into Microsoft Excel� XE "Excel" � when redirected to a file (via the redirector “> filename.asc”). Excel can then be used to generate time plots.
�mfcna: CAMAC f, c, n, a Utility
The mfcna utility� XE "mfcna utility" � is a command line utility which can be used to execute single CAMAC operations on a remote front-end computer which is connected to CAMAC.
Syntax
mfcna [-h hostname] [-e experiment] [-c client]
Options
-h hostname
Specifies host to connect to. Must be a valid IP host name. This option supersedes the MIDAS_SERVER_HOST environment variable.
-e experiment
Specifies the experiment to connect to. This option supersedes the MIDAS_EXPT_NAME environment variable.
-c client
Client name of front-end which is connected to CAMAC. The client name for a front-end is defined in its frontend.c file.
Description
The mfcna utility executes single CAMAC commands on a remote MIDAS front-end via Remote Procedure Calls. If a front-end which has this functionality is currently running, mfcna connects automatically to that client. If more than one CAMAC front-end are running, the -c flag has to be used.
<mfcna command syntax has to be written>
Writing new MIDAS Applications
Introduction
MIDAS does not include any scripting language for performance reasons. Instead, users are encouraged to write their own C, C++ or FORTRAN � XE "FORTRAN" �programs to perform specific tasks. Care has been taken that the MIDAS library is easy to use and custom applications need only a few lines of code to modify ODB entries, start and stop runs etc. Experiments often have very specific needs, which hardly can be covered with general purpose programs. These needs can mostly satisfied with small experiment specific applications, which unleash the real power of the MIDAS system.
This Chapter gives an overview of writing user MIDAS applications. It only covers some of the library functions. A MIDAS library reference is given in the Appendix. Library routines are grouped into six main classes: buffer manager routines (bm_xxx()), ODB routines (db_xxx()), system services (ss_xxx()), RPC routines (rpc_xxx()), bank routines (bk_xxx()) and common routines (cm_xxx()). These routines are explained in the next sections.
To use the MIDAS library, the file midas.h has to be include (midas.inc for FORTRAN programs). Then the application has to be linked together with the MIDAS library libmidas.a (UNIX) or midas.lib (NT). The NT library is only an “import library”, the code is contained in shared library midas.dll in the windows system directory. If an application is moved to another PC, midas.dll has to be moved there, too.
All functions in the MIDAS library return a value of type INT. This type is used instead of the standard C type int because on some systems int is not a 32 bit integer but a 16 or 64 bit integer. INT is defined such that it is always a 32 bit integer. The return values are defined in midas.h under “status and error codes”. A value of one always signals success, a value larger than one an error. Possible error codes for each function are described in the source code midas.c, system.c and odb.c. In the following examples the error code is not checked for simplicity, but in a real application error checking is mandatory.
Common Routines
Connecting to an Experiment
Before any operation can be done, the application has to “connect” to an experiment. This can be an experiment running on the local computer or on a remote host. When connected, the system creates a client info entry under /System/Clients/<pid> in the ODB so that the client can be seen with the ODBEdit command scl. Connecting to an experiment is done with the cm_connect_experiment() routine. Its syntax is
cm_connect_experiment(char *host_name,� char *exp_name,� char *client_name,� void (*func)(char*));
The host_name is the IP address of a remote host. The string can be empty ("") if to connect to the local computer. The exp_name is the experiment name. If this string is empty, the number of defined experiments in exptab is checked. If only one experiment is defined, the function automatically connects to this one. If more than one experiment is defined, a list is presented and the user can interactively select one experiment.
Following example program connects and disconnects to an experiment “Sample” on host “pc810”:
#include <midas.h>��main() �{� cm_connect_experiment("pc810", "Sample",� "Test", NULL);�� <...do anyting...>�� cm_disconnect_experiment();�}
All standard MIDAS applications and utilities can be supplied with the host name and experiment as command line parameters -h and -e, or with the environment variables MIDAS_SERVER_HOST and MIDAS_EXPT_NAME where the command line parameters have priority over the environment variables. To implement this functionality, following code can be used:
#include <stdio.h>�#include <midas.h>��main(int argc, char *argv[]) �{�INT status, i;�char host_name[256],exp_name[32]; � � /* get default values from environment */� cm_get_environment(host_name, exp_name);� � /* parse command line parameters */� for (i=1 ; i<argc ; i++) � {� if (argv[i][0] == '-') � {� if (i+1 >= argc || argv[i+1][0] == '-')� goto usage;� if (argv[i][1] == 'e')� strcpy(exp_name, argv[++i]);� else if (argv[i][1] == 'h')� strcpy(host_name, argv[++i]);� else � {�usage:� printf("usage: test [-h Hostname] \�[-e Experiment]\n\n");� return 1;� }� }� }�� status = cm_connect_experiment(host_name,� exp_name, "Test", NULL);� if (status != CM_SUCCESS)� return 1;��<...do anyting...>�� cm_disconnect_experiment();�}
It is important not to forget the disconnect function, otherwise the client won’t clean up the ODB client entry properly.
Run Transitions
A run transition (start/stop/pause/resume) is made via the cm_transition() function. Its syntax is
INT cm_transition(INT transition,� INT run_number,� char *error, INT strsize,� INT async_flag)
The transition is one of TR_START, TR_STOP, TR_PAUSE or TR_RESUME. The run_number is only used when a new run is started. The error string can contain error information from a remote client which cannot perform the transition (like a logger which cannot mount a tape). In this case the function does not return CM_SUCCESS, but an error code which is also supplied by the remote client. strsize is the maximum size the error string can contain. If it is defined as error[32], this value must be 32. The async_flag causes an asynchronous transition if set to TRUE. This means that the function does not wait for all remote clients to perform a transition, but returns immediately. No error information is then returned from the clients.
To be notified when a transition occurs, a program can register a callback function. To do so, the function cm_register_transition() is called:
INT cm_register_transition(INT transition,� INT (*func)(INT,char*));
The transition value can now be either one of the above, or additionally TR_PRESTART, TR_POSTSTART, TR_PRESTOR, TR_POSTSTOP. The “pre” transitions are executed before a transitions, the “post” transitions after. The logger for examples uses the pre-start to open logging files and the post-stop to close them. The callback function func() has two parameters: The run number supplied by the cm_transition() function and the error string which is passed back to the cm_transition() function. The callback function should return CM_SUCCESS if successful or an error code larger than one together with an error description in the error string in case of failure. Following listing shows an example transition callback function:
INT start(INT run_number, char *error) �{� if (<not ok>) � {� strcpy(error, "Cannot start because ...");� return 2;� }�� printf("Starting run %d\n", run_number);� return CM_SUCCESS;�}
Since MIDAS applications don’t use multi-threading techniques, a central dispatcher has to be called which checks for run transitions and calls registered callback functions. This function is called cm_yield() and should be called periodically in the main loop of the program:
do � {� status = cm_yield(1000);� } while (status != RPC_SHUTDOWN &&� status != SS_ABORT);
The parameter to cm_yield() is the time-out. After this time (in milliseconds), the cm_yield() routine returns if there is no transition or other callback. If other periodic tasks have to be performed in the application, they can be placed in this main loop. The time-out can be reduced if necessary, but a value of less than 10 ms causes a high CPU consumption. Internally the cm_yield() function executes a socket select() function.
The status checking tests for a shutdown message (issued by ODBEdit with the shutdown command) and network aborts, which can happen if the MIDAS server on the remote host gets killed.
Other Functions
Following table briefly list some other functions.
Function�Description��cm_register_function()�Register an arbitrary callback function (like fcna in the front-end). The function must be define in mrpc.c/h��cm_connect_client()�Directly connect to a remote client to call a registered function via rpc_client_call()��cm_disconnect_client()�To disconnect from a client��cm_set_watchdog_params()�Modify watchdog parameters��cm_enable_watchdog()�Enable/Disable watchdog��cm_shutdown()�Shut down remote client��cm_exist()�Check if client exists��cm_execute()�Execute shell command on back-end��cm_synchronize()�Synchronize clocks between remote client and back-end��RPC Functions��rpc_send_event()�Send event directly on the RPC level (faster than remote bm_send_event())��rpc_flush_event()�Flushes buffers used by rpc_send_event()��rpc_client_call()�Call remote procedure on client��rpc_get_convert_flags()�Retrieve flags necessary to convert data between remote client and back-end like little/big endian conversion��rpc_convert_single()�Convert single value according to convert flags��rpc_convert_data()�Convert array of values according to convert flags��History Functions��hs_set_path()�Set path where history files are written��hs_define_event()�Define event for history system��hs_write_event()�Write event to history system��hs_enum_events()�Enumerate events in a history file��hs_enum_tags()�Enumerate tags (variables) in an event stored in a history file��hs_read()�Read a number of values in a specific time range from history files��hs_dump()�Write all variables in a specific time range from history files��
The history functions are used internally by the logger and by the mhist utility, but they can be used independently of any other MIDAS library function, because they don’t use the ODB or the buffer manager.
Buffer Manager Routines
Buffer manager routines are used to send and receive events. A basic consumer is described in Chapter � REF _Ref409514101 \n �3.1.4� “� REF _Ref409514101 * MERGEFORMAT �Creating a New Analyzer�”. It uses the functions bm_open_buffer() and bm_request_event() to receive events. A more complicated program can use the functions bm_delete_request() and bm_close_buffer() to work with to delete event requests and close buffers.
To send events, the function bm_send_event() can be used. A MIDAS event header can be composed with the function bm_compose_event():
INT bm_compose_event(EVENT_HEADER *event,� short int event_id,� short int trigger_mask,� DWORD data_size,� DWORD serial_number);
INT bm_send_event(INT buffer_handle,� void *event,� INT buf_size,� INT async_flag);
If the async_flag in bm_send_event() is TRUE, the function immediately returns with the status BM_ASYNC_RETURN if the buffer is full, otherwise it blocks until the buffer has enough space for the event. Following example sends and event with ID 10 containing 100 bytes to the buffer “test”.
INT hbuf;�char event[1000];�� bm_open_buffer("TEST", 100000, &hbuf);�� bm_compose_event(event, 10, 0, 100, 0);�� memcpy(event+sizeof(EVENT_HEADER),� <event_data>, 100);�� bm_send_event(hbuf, event,� 100+sizeof(EVENT_HEADER), SYNC);
Note that the event buffer only has to be opened once, it can then be used through its handle (similar to a file handle). The event array contains a 16 bytes MIDAS event header which is filled by the bm_compose_event() routine. The memcpy() function then copies the event data (which can be obtained by reading out hardware for example) after the event header.
Following other functions exist:
Function�Description��bm_set_cache_size()�Set buffer cache size for higher data throughput��bm_flush_cache()�Flush all events from cache��bm_receive_event()�Receive event directly (without callback)��bm_empty_buffer()�Delete any pending events when reading from a buffer. Can be used to make changes in the hardware immediately visible to the analyzer by skipping old events.��
System Message Routines
The MIDAS message system uses internally also buffer manager function to exchange messages through the buffer “SYSMSG”. Each application can produce a message with
cm_msg� XE "cm_msg" �(<type>,char *routine_name,char *message,...)
Where <type> is the type of a message, routine_name is the name of the current routine, and message is a format equivalent to the C printf() function. Every client an receive system messages by registering a callback function:
void process_message(HNDLE hBuf, HNDLE id,� EVENT_HEADER *pheader, void *message)�{� printf("%s\n", message);�}��main() �{� ...� cm_msg_register(process_message);� ...�}
The message type is contained in the event ID (pheader->event_id).
The message <type> is actually a macro which causes the current file name and line number to be contained in error messages. It can be the following:
MERROR	Error messages containing file name and line number
MINFO	Info message
MDEBUG	Debug message only written to the SYSMSG buffer but not logged
MUSER	Message produced by user via ODBEdit commands msg or chat
MLOG	Info message which is only logged but not distributed
MTALK	Message which should be forwarded to a text-to-speech system (if present)
MCALL	Message which should be forwarded to a paging system (if present)
Error messages are usually used if something goes wrong in the code. Since the source code file and line number are contained in the message they can be traces easily.
ODB Routines
Various routines exist to access the ODB. Before using any of these, a handle has to be obtained to the ODB:
INT cm_get_experiment_database(HNDLE *hdb,� HNDLE *hclient);
where hdb is the ODB handle and hclient is the key handle for the client (referring to /System/Clients/<pid>).
Keys inside the ODB can be referred in two ways, either with their pathname or with a handle. Pathnames are case insensitive and can contain blanks. The handle is an internal address to the shared memory of the ODB and allows a very fast access to it. To get a handle for a key, the function db_find_key() is used:
INT db_find_key(HNDLE hdb, HNDLE hstartkey,� char *key_name, HNDLE *hkey);
where name is the pathname (such as /Runinfo/Run number) and hkey is the returned handle. The function can search from the root of the ODB (hstartkey=0), or from a specific start key downwards, which has also to be obtained via this function.
The MIDAS library has two sets of functions for accessing ODB keys, one using names and one using keys. Following functions use a name:
INT db_set_value(HNDLE hdb, HNDLE hstartkey,� char *key_name, void *data,� INT size, INT num_values,� DWORD type);
INT db_get_value(HNDLE hdb, HNDLE hstartkey,� char *key_name, void *data,� INT *size, DWORD type);
data points to the key value, size is the size of the key, num_values can be used to write an array of values to a single key and type is one of TID_xxx as defined in midas.h. Following example increments the run number in the ODB:
HNDLE hDB;�INT size, run_number;�� cm_get_experiment_database(&hDB, NULL);� � size = sizeof(run_number);� db_get_value(hDB, 0,� "/Runinfo/Run number", &run_number,� &size, TID_INT); �� run_number++;�� db_set_value(hDB, 0,� "/Runinfo/Run number", &run_number,� size, 1, TID_INT);
The functions which use a key handle obtained via db_find_key() to access ODB keys are:
INT db_get_data(HNDLE hdb, HNDLE hkey,� void *data, INT *size,� DWORD type);
INT db_get_data_index(HNDLE hdb, HNDLE hkey,� void *data, INT *size,� INT index, DWORD type);
INT db_set_data(HNDLE hdb, HNDLE hkey,� void *data, INT size,� INT num_values, DWORD type);
INT db_set_data_index(HNDLE hdb, HNDLE hkey,� void *data, INT size,� INT index, DWORD type);
For the get functions the size value is initially set to the maximum size of the buffer which data points to. If the buffer is too small to hold an array of values, the data is truncated. Upon return the size value contains the real size copied to the data buffer. The index functions can be used to access individual values of a key which contains an array of values.
Keys can be created with
INT db_create_key(HNDLE hdb, HNDLE hstartkey,� char *key_name, DWORD type);
where a key with a specific type and name is created relative to a start key. Following example creates a key /Experiment/Run parameters/Comment assuming that /Experiment/Run parameters exists already and writes a string to it:
HNDLE hkey, hkeycomment;�� db_find_key(hdb, 0, � "/Experiment/Run parameters", &hkey);�� db_create_key(hdb, hkey, "Comment", TID_STRING);�� db_find_key(hdb, hkey, "Comment", &hkeycomment);�� db_set_data(hdb, hkeycomment, "Test string",� 12, 1, TID_STRING);
The second db_find_key() call searches for the newly created Comment key starting from /Experiment/Run parameters.
Keys can be deleted with db_delete_key():
INT db_delete_key(HNDLE hdb, HNDLE hkey,� BOOL follow_links);
This function deletes a key and all its sub-keys. If follow_links is TRUE and the key or one of its sub-keys is a ODB link, the target of this links and all its sub-keys are also deleted.
To enumerate a list of sub-keys under a key, the function db_enum_key() together with db_get_key() can be used:
INT db_enum_key(HNDLE hdb, HNDLE hkey,� INT index, HNDLE *hsubkey);
INT db_get_key(HNDLE hdb, HNDLE hkey,� KEY *key);
The KEY structure is defined in midas.h. Following examples prints all keys under /Runinfo:
INT i;�HNDLE hkey, hsubkey;�KEY key;�� db_find_key(hdb, 0, "/Runinfo", &hkey);� for (i=0 ; ; i++) � {� db_enum_key(hdb, hkey, i, &hsubkey);� if (!hSubkey)� break; /* end of list reached */�� db_get_key(hdb, hkey, &key);� printf("%s\n", key.name);� }�
The function db_enum_key() returns the i-th key under hkey. It returns zero in hsubkey if the end of the list is reached.
Following other functions exist:
Function�Description��db_create_link()�To create a ODB link��db_scan_tree()�To browse a whole sub-tree and call a user function for each key��db_get_key_time()�To retrieve the time when a key was last modified��db_rename_key()�To rename a key��db_reorder_key()�To change the ordering of keys��db_set_mode()�To change the mode bits of a key (for example write access)��db_create_record()�To create a sub-tree which matches a C structure, see page � PAGEREF db_create_record �26� for an example��db_open_record()�To establish a hot-link��db_get_record()/ db_set_record()�To move data between a C structure and a ODB sub-tree��db_load()/db_save()�Load and save a sub-tree��db_copy()/db_paste()�Copy a ODB tree to a ASCII buffer and back��db_sprintf()�Print a ODB value into a string��db_sscanf()�Scan a ODB value from a string��
For an exact syntax refer to “� REF _Ref410211008 * MERGEFORMAT �Appendix G: Alphabetical MIDAS Library Reference�” or to the source code in odb.c.
System Services
System services are used to cover operating dependent system calls. They contain conditional code which use native OS calls on each system to achieve the same functionality. The advantage of this technique is that the same functions can be used on any supported operating system. Following list briefly lists some of the available services:
Function�Description��ss_millitime()�Return time in milliseconds (arbitrary offset). Can be used to measure time differences.��ss_time()�Return time in seconds since 1.1.1970 UTC��ss_sleep()�Suspend process for a number of milliseconds��ss_kbhit()�Returns TRUE if a key has been pressed��ss_clear_screen()�Clear screen��ss_printf()�Print string at XY location on screen��ss_getpass()�Read invisible password��ss_getchar()�Read single character��ss_gets()�Read input line (without being interrupted by alarm signal)��ss_directio_xxx�Functions for direct port access under Windows NT��ss_tape_xxx�Magnetic tape functions (write, read, rewind etc.)��
Appendix
Appendix � SEQ Appendix * ALPHABETIC �A�: Online Database Structure
Following table lists the main ODB entries and briefly describes them. If they are explained in more detail in this manual, the corresponding manual page is listed.
Key�Description�Page��/System/Clients/<pid>�Contains information about each client connected to the experiment. <pid> is the process ID which is used to create a subdirectory for each client. In case of a remote client, the PID belongs to the server sub-process serving this client. The client information is displayed by the ODBEdit scl command.�-��/Runinfo�General run information�� PAGEREF runinfo �33���/Experiment/Name�Name of current experiment. Copied from extab file automatically.�-��/Experiment/Security�Security information for connecting to this experiment�� PAGEREF _Ref410094949 �19���/Experiment/Run parameters�Run parameters for this experiment�� PAGEREF _Ref410095026 �34���/Experiment/Edit on start�Links to parameters to be entered when starting a run�� PAGEREF edit_on_start �34���/Logger�General logger settings.�� PAGEREF _Ref410094121 �35���/Logger/Channels/<n>�Logger settings for each channel (n=0,1,2,...)�� PAGEREF channel_settings �36���/Equipment/<name>�Information about various hardware equipment. Usually one equipment is defined for “Trigger” hardware, for “Scalers” and for various slow control hardware like “HV” (high voltage).�� PAGEREF _Ref410095646 �20���/Equipment/<name>/Common�Common equipment information. Initially copied from the front-end equipment list, can be modified online to change front-end behavior.�� PAGEREF _Ref410095539 �20���/Equipment/<name>/Statistics�Statistics about sent events for specific equipment�� PAGEREF equipment_statistics �38���/Equipment/<name>/Variables�Contains a copy of the last event, updated every ten seconds if the equipment read-out flag RO_ODB is set.�� PAGEREF equipment_variables �38���/Equipment/<name>/Settings�Settings specific to the equipment hardware. Can be used to control hardware via a front-end.�� PAGEREF _Ref410096018 �25���/Analyzer�Parameters and settings for the MIDAS standard analyzer.���/Analyzer/Parameters/<module name>�Parameters for a specific analyzer module.�� PAGEREF _Ref410096324 �40���/Analyzer/Output�Parameters for the analyzer output�� PAGEREF analyzer_output �44���/Analyzer/Bank switches�Turns individual banks on and off in the analyzer output�� PAGEREF analyzer_bank_switches �44���/Analyzer/Module switches�Activates/Deactivated individual modules in the analyzer�� PAGEREF analyzer_module_switches �45���/Analyzer/<equipment name>/Common�Parameters for receiving events from specific equipment. Initially copied from ANALYZER_REQUEST list, can be modified online to change behavior of the analyzer.�� PAGEREF analyze_request �42���/Analyzer/<equipment name>/Statistics�Statistics about received events from a specific equipment�-��
�Appendix � SEQ Appendix * ALPHABETIC �B�: I/O Libraries for CAMAC, VME and FASTBUS
<to be written>
�Appendix � SEQ Appendix * ALPHABETIC �C�: MIDAS Event Format
Special formats are used in MIDAS for the event header, for banks and when writing to disk or tape. This appendix explains these formats in detail.
Event Format
Each event carries a 16 byte header. The header is generated by the front-end with the bm_compose_event() routine and used by the consumers to distinguish between different events. The header is defined in the EVENT_HEADER structure in midas.h. It has following structure:
bit 0�bit 31��event ID�trigger mask��serial number��time stamp��data size��
The event ID describes the type of event. Usually 1 is used for trigger events, 2 for scaler events, 3 for HV events etc.
The trigger mask can be used to describe the sub-type of an event. A trigger event can have different trigger sources like “physics event”, “calibration event”, “clock event”. These trigger sources are usually read in by the front-end in a pattern unit. Consumers can request events with a specific trigger mask.
The serial number starts at one and is incremented by the front-end for each event. The time stamp is written by the front-end before an event is read out. It uses the time() function which returns the time in seconds since 1.1.1970 00:00:00 UTC.
The data size contains the number of bytes which follow the event header. The data area of the event can contain information in any user format, although only certain formats are supported when events are copied to the ODB or written by the logger in ASCII format.
Event header are always kept in the byte ordering of the local machine. If events are sent over the network between computers with different byte ordering, the event header is swapped automatically, but not the event contents.
Bank Format
Events in MIDAS format contain “MIDAS banks”. A bank is a substructure of an event and can contain one type of data, either a single value or an array of values. Banks have a name of exactly four characters, which are treated as a bank ID. Banks in an event consist of a global bank header and an individual bank header for each bank. Following picture shows a MIDAS event containing banks:
bit 0�bit 31��16 bytes�MIDAS event header��global bank�data size total��header�flags��bank�A�B�C�D��header�bank type�data size���“data size” bytes��bank data���bank�A�B�C�D��header�bank type�data size���“data size” bytes��bank data����...��
The “data size total” is the size in bytes of all bank headers and bank data. Flags are currently not used. The bank header contains four characters as an identification, a bank type which is one of the TID_xxx values defined in midas.h, and the data size in bytes.
If the byte ordering of the contents of a complete event has to be swapped, the routine bk_swap() can be used.
Tape Format
Events are written to disk files without any reformatting. For tapes, a fixed block size is used. The block size TAPE_BUFFER_SIZE is defined in midas.h and usually 32kB. Three special events are produced by the system. A begin-of-run (BOR) and end-of-run (EOR) event is produced which contains an ASCII dump of the ODB in its data area. Their IDs is 0x8000 (BOR) and 0x8001 (EOR). A message event (ID 0x8002) is created if Log messages is enabled in the logger channel setting. The message is contained in the data area as an ASCII string.
The BOR event has the number MIDAS_MAGIC (0x494d or ‘MI’) as the trigger mask and the current run number as the serial number. A tape can therefore be identified as a MIDAS formatted tape.
The routine tape_copy() in the utility mtape.c is an example of how to read a tape in MIDAS format.
�Appendix � SEQ Appendix * ALPHABETIC �D�: YBOS Event Format
<to be written>
�Appendix � SEQ Appendix * ALPHABETIC �E�: Supported Hardware
Various hardware is supported by drivers included in the drivers directory of the MIDAS distribution. The driver library is continuously extended to suit the needs of various experiments. Following list gives an overview of the supported hardware:
File�Device model�Manufacturer�Device type�Environment��hyt1331.h�HYTEC 1331�HYTEC Ltd.�PC-CAMAC interface�MS-DOS��mhyt1331.h�HYTEC 1331�HYTEC Ltd.�PC-CAMAC interface�Windows NT��cam8210.c/h�CES 8210�CES�VME-CAMAC interface�VME/VxWorks��lrs1190.c/h�LRS 1190�LeCroy�VME dual ported memory�VME/VxWorks��lrs1821.c/h�LRS 1821�LeCroy�FASTBUS Segment Manager Interface�MS-DOS��lrs2373.c/h�LRS 2373�LeCroy�Memory Lookup Unit�uses hyt1331.h��ps7106.c/h�PS 7106�Phillips Scientific�CAMAC discriminator�uses hyt1331.h��lrs2365.c/h�LRS 2365�LeCroy�CAMAC logic unit�uses hyt1331.h��rs232.c/h�Standard PC�various�RS232 serial port�MS-DOS/ Windows NT��
Follow class drivers and corresponding device drivers are included for the slow control system:
File�Device model�Manufacturer�Device type�Environment��cd_hv.c/h�Class driver��High voltage�all��null.c�-��dummy driver�all��lrs1440.c�LRS 1440�LeCroy�High voltage supply system�uses rs232.c��lrs4032.c�LRS 4032�LeCroy�High voltage supply system�uses cam8210.c��caen170a.c�CAEN 170A�CAEN�High voltage supply system�uses cam8210.c��cd_multi.c/h�Class driver��Analog In/Out�all��das1600.c�DAS 1600�Keithley�Analog/Digital input/output�MS-DOS/Windows NT��dastemp�DAS-TEMP�Keithley�Temperature measurement�MS-DOS/Windows NT��
�Appendix � SEQ Appendix * ALPHABETIC �F�: Computer Busy Logic
A “computer busy logic” has to be implemented for a front-end to work properly. The reason for this is that some ADC modules can be re-triggered. If they receive more than one gate pulse before being read out, they accumulate the input charge which leads to wrong results. Therefore only one gate pulse should be sent to the ADC’s, additional pulses must be blocked before the event is read out by the front-end.
This operation is usually performed by a latch module, which is set by the trigger signal and reset by the computer after it has read out the event:
�
The output of this latch is shaped (limited in its pulse with to match the ADC gate width) and distributed tot he ADC’s.
This scheme has two problems. The reset signal is generated by the computer, usually by two CAMAC output functions to a CAMAC IO unit. Therefore the duration of the pulse is a couple of ms. There is a non-negligible probability that during the reset pulse there is another hardware trigger. If this happens and both inputs of the latch are active, its function is undefined. Usually it generates several output pulses which lead to wrong ADC values.
The second problem lies in the fact that the latch can be just reset when a trigger input is active. This can happen since trigger signals usually have a width of a few tens of nanoseconds. In this case the latch output signal does not carry the timing of the trigger signal, but the timing of the reset signal. The wrong timing of the output can lead to false ADC and TDC signals.
To overcome this problems, a more elaborate scheme is necessary. One possible solution is the use of a latch module with edge-sensitive input and veto input. At PSI, the module “D. TRIGGER / DT102” can be used. The veto input is also connected to the computer:
�
To reset this latch, following bit sequence is applied to the computer output (signals are displayed active low):
�
The active veto signal during the reset pulse avoids that the latch can receive a “set” and a “reset” simultaneously. The edge sensitive input ensures that the latch can only trigger on a leading edge of a trigger signal, not on the removing of the veto signal. This ensures that the timing of the trigger is always carried at the ADC/TDC gate signal.
�Appendix � SEQ Appendix * ALPHABETIC �G�: Alphabetical MIDAS Library Reference
A reference to most MIDAS library functions is listed on following pages. The MIDAS source code files midas.c, system.c and odb.c contain some more functions not listed here which are meant for internal use only.
All functions are of type INT unless specified differently. Most functions can return RPC_NET_ERROR which means that the TCP connection to a remote server got broken. This error code is not explicitly listed in the return values.
�bk_close
Closes a bank.
Syntax
bk_close(void *event, void *pdata)
Parameters
event
Pointer to data area of event
Return value
void���Remarks
The data pointer pdata must be obtained by bk_create() and used as an address to fill a bank. It is incremented with every value written to the bank and finally points to a location just after the last byte of the bank. It is then passed to bk_close() to finish the bank creation.
Example
See bk_create()
�bk_create
Creates a bank.
Syntax
bk_create(void *event, char *name, WORD type,� void *pdata)
Parameters
event
Pointer to data area of event
name
Name of bank, must be exactly four characters
type
type of bank, one of the TID_xxx values defined in midas.h
pdata
Pointer returned by bk_create() which points to the data area of the newly created bank.
Return value
void���Remarks
The data pointer pdata must be used as an address to fill a bank. It is incremented with every value written to the bank and finally points to a location just after the last byte of the bank. It is then passed to the function bk_close() to finish the bank creation.
Example
INT *pdata;�� bk_init(pevent);�� bk_create(pevent, "ADC0", TID_INT, &pdata);� *pdata++ = 123� *pdata++ = 456� bk_close(pevent, pdata);
�bk_init
Initializes an event to contain banks.
Syntax
void bk_init(void *event)
Parameters
event
Pointer to data area of event
Return value
void���Remarks
Before banks can be created in an event, bk_init() has to be called first.
�bk_iterate
Iterates through banks inside an event.
Syntax
bk_iterate(void *event, BANK **pbk,� void *pdata)
Parameters
event
Pointer to data area of event
pbk
Pointer to the bank header, must be NULL for the first call to this function
pdata
Pointer to data area of bank
Return value
INT�Size of bank in bytes��Remarks
The function can be used to enumerate all banks of an event. The returned pointer to the bank header has following structure:
typedef struct {� char name[4];� WORD type;� WORD data_size;�} BANK;
where type is a TID_xxx value and data_size the size of the bank in bytes.
Example
BANK *pbk;�INT size;�void *pdata;�char name[5];�� pbk = NULL;� do� {� size = bk_iterate(event, &pbk, &pdata);� if (pbk == NULL)� break;�� *((DWORD *)name) = *((DWORD *)(pbk)->name);� name[4] = 0;� printf("bank %s found\n", name);�� } while(TRUE);
�bk_locate
Locates a MIDAS bank of given name inside an event.
Syntax
bk_locate(void *event, char *name, void *pdata)
Parameters
event
Pointer to data area of event
name
Bank name
pdata
pointer to data area of bank, NULL if bank not found
Return value
INT�Number of values inside bank��Remarks
A bank can also contain zero values, in which case the function returns zero but a valid pdata pointer. If the bank cannot be found, the function returns zero and pdata is NULL.
�bk_size
Returns the size of an event containing banks.
Syntax
bk_size(void *event)
Parameters
event
Pointer to data area of event
Return value
INT�Number of bytes contained in data area of event��Remarks
The total size of an event is the value returned by bk_size() plus the size of the event header (sizeof(EVENT_HEADER)).
�bk_swap
Swaps bytes from little endian to big endian or vice versa for a whole event.
Syntax
bk_swap(void *event, BOOL force)
Parameters
event
Pointer to data area of event
force
If TRUE, the event is always swapped, if FALSE, the event is only swapped if it is in the wrong format.
Return value
1�Event has been swapped��0�Event hat not been swapped��Remarks
An event contains a flag which is set by bk_init() to identify the endian format of an event. If force is FALSE, this flag is evaluated and the event is only swapped if it is in the “wrong” format for this system. An event can be swapped to the “wrong” format on purpose for example by a front-end which wants to produce events in a “right” format for a back-end analyzer which has different byte ordering.
�bm_close_buffer
Closes an event buffer previously opened with bm_open_buffer().
Syntax
bm_close(INT buffer_handle)
Parameters
buffer_handle
Buffer handle returned by bm_open_buffer().
Return value
BM_SUCCESS�Successful completion��BM_INVALID_HANDLE�Invalid buffer handle���bm_compose_event
Composes a MIDAS event header.
Syntax
bm_compose_event(EVENT_HEADER *event_header,� short int event_id,� short int trigger_mask,� DWORD size, DWORD serial)
Parameters
event_header
Pointer to the event header
event_id
Event ID of the event
trigger_mask
Trigger mask of the event
size
Size of the data part of the event in bytes
serial
Serial number
Return value
BM_SUCCESS�Successful completion��Remarks
An event header can usually be set-up manually or through this routine. Following structure is created at the beginning of an event:
typedef struct {� short int event_id; � short int trigger_mask; � DWORD serial_number; � DWORD time_stamp; � DWORD data_size; �} EVENT_HEADER;
If the data size of the event is now known when the header is composed, it can be set later with event_header->data-size = <...>.
Example
char event[1000];�� /* create event with ID 1, trigger mask 0,� size 100 bytes and serial number 1 */� bm_compose_event((EVENT_HEADER *)event, 1, 0, 100, 1);�� /* set first byte of event */� *(event+sizeof(EVENT_HEADER)) = <...>
�bm_delete_request
Deletes an event request previously done with bm_request_event().
Syntax
db_delete_request(INT request_id)
Parameters
request_id
Request ID returned by bm_request_event().
Return value
BM_SUCCESS�Successful completion��BM_INVALID_HANDLE�Invalid request ID��Remarks
When an event request gets deleted, events of that requested type are not received any more. When a buffer is closed via bm_close_buffer(), all event requests from that buffer are deleted automatically.
�bm_empty_buffers
Clears event buffer and cache.
Syntax
bm_empty_buffers()
Return value
BM_SUCCESS�Successful completion��Remarks
If an event buffer is large and a consumer is slow in analyzing events, events are usually received some time after they are produced. This effect is even more experienced if a read cache is used (via bm_set_cache_size()). When changes to the hardware are made in the experience, the consumer will then still analyze old events before any new event which reflects the hardware change. Users can be fooled by looking at histograms which reflect the hardware change many seconds after they have been made.
To overcome this potential problem, the analyzer can call bm_empty_buffers() just after the hardware change has been made which skips all old events contained in event buffers and read caches. Technically this is done by forwarding the read pointer of the client. No events are really deleted, they are still visible to other clients like the logger.
Note that the front-end also contains write buffers which can delay the delivery of events. The standard front-end framework mfe.c reduces this effect by flushing all buffers once every second.
�bm_flush_cache
Empties write cache.
Syntax
bm_flush_cache(INT buffer_handle,� INT async_flag)
Parameters
buffer_handle
Buffer handle obtained via bm_open_buffer().
async_flag
Synchronous/asynchronous flag. If FALSE, the function blocks if the buffer has not enough free space to receive the full cache. If TRUE, the function returns immediately with a value of BM_ASYNC_RETURN without writing the cache.
Return value
BM_SUCCESS�Successful completion��BM_INVALID_HANDLE�Invalid buffer handle��BM_ASYNC_RETURN�Routine called with async_flag == TRUE and buffer has not enough space to receive cache ��BM_NO_MEMORY�Event is too large for network buffer or event buffer. One has to increase MAX_EVENT_SIZE or EVENT_BUFFER_SIZE in midas.h and recompile.��Remarks
This function should be used if events in the write cache should be visible to the consumers immediately. It should be called at the end of each run, otherwise events could be kept in the write buffer and will flow to the data of the next run.
�bm_open_buffer
Open an event buffer.
Syntax
bm_open_buffer(char *buffer_name,� INT buffer_size,� INT *buffer_handle)
Parameters
buffer_name
Name of buffer
buffer_size
Size of buffer in bytes
buffer_handle
Buffer handle returned by function
Return value
BM_SUCCESS�Successful completion��BM_CREATED�Buffer has been created��BM_NO_SHM�Shared memory cannot be created��BM_NO_MUTEX�Mutex cannot be created��BM_NO_MEMORY�Not enough memory to create buffer descriptor��BM_MEMSIZE_MISMATCH�Buffer size conflicts with an existing buffer of different size��BM_INVALID_PARAM�Invalid parameter��Remarks
Two default buffers are created by the system. The “SYSTEM” buffer is used to exchange events and the “SYSMSG” buffer is used to exchange system messages. The name and size of the event buffers is defined in midas.h as EVENT_BUFFER_NAME and EVENT_BUFFER_SIZE. Following example opens the “SYSTEM” buffer, requests events with ID 1 and enters a main loop. Events are then received in process_event().
Example
#include <stdio.h>�#include "midas.h"���void process_event(HNDLE hbuf, HNDLE request_id,� EVENT_HEADER *pheader, void *pevent)�{� printf("Received event #%d\r",� pheader->serial_number);�}��main() �{�INT status, request_id;�HNDLE hbuf;�� status = cm_connect_experiment("pc810", "Sample",� "Simple Analyzer", NULL);� if (status != CM_SUCCESS)� return 1;�� bm_open_buffer(EVENT_BUFFER_NAME, EVENT_BUFFER_SIZE,� &hbuf);� bm_request_event(hbuf, 1, TRIGGER_ALL,� GET_ALL, request_id, process_event);� � do � {� status = cm_yield(1000);� } while (status != RPC_SHUTDOWN &&� status != SS_ABORT);�� cm_disconnect_experiment();�� return 0;�}
�bm_receive_event
Receives events directly.
Syntax
bm_receive_event(INT buffer_handle,� void *destination,� INT *buf_size, INT async_flag)
Parameters
buffer_handle
Buffer handle
destination
Destination address where event is written to
buf_size
Size of destination buffer on input, size of event plus header on return.
async_flag
Synchronous/asynchronous flag. If FALSE, the function blocks if no event is available. If TRUE, the function returns immediately with a value of BM_ASYNC_RETURN without receiving any event.
Return value
BM_SUCCESS�Successful completion��BM_INVALID_HANDLE�Invalid buffer handle��BM_TRUNCATED�The event is larger than the destination buffer and was therefore truncated��BM_ASYNC_RETURN�No event available��Remarks
This function is an alternative way to receive events without a main loop. It can be used in analysis systems which actively receive events, rather than using callbacks. A analysis package could for example contain its own command line interface. A command like “receive 1000 events” could make it necessary to call bm_receive_event() 1000 times in a row to receive these events and then return back to the command line prompt.
The according bm_request_event() call contains NULL as the callback routine to indicate that bm_receive_event() is called to receive events.
Example
#include <stdio.h>�#include "midas.h"��void process_event(EVENT_HEADER *pheader)�{� printf("Received event #%d\r",� pheader->serial_number);�}��main() �{�INT status, request_id;�HNDLE hbuf;�char event_buffer[1000];�� status = cm_connect_experiment("", "Sample",� "Simple Analyzer", NULL);� if (status != CM_SUCCESS)� return 1;�� bm_open_buffer(EVENT_BUFFER_NAME, EVENT_BUFFER_SIZE,� &hbuf);� bm_request_event(hbuf, 1, TRIGGER_ALL,� GET_ALL, request_id, NULL);� � do � {� size = sizeof(event_buffer);� status = bm_receive_event(hbuf, event_buffer, &size,� ASYNC);� if (status == CM_SUCCESS)� process_event((EVENT_HEADER *) event_buffer);�� <...do something else...>�� status = cm_yield(0);� } while (status != RPC_SHUTDOWN &&� status != SS_ABORT);�� cm_disconnect_experiment();�� return 0;�}
�bm_request_event
Requests certain types of events.
Syntax
bm_request_event(HNDLE buffer_handle,� short int event_id,� short int trigger_mask,� INT sampling_type, � HNDLE *request_id,�void (*func)(HNDLE,HNDLE,EVENT_HEADER*,void*))
Parameters
buffer_handle
Buffer handle obtained via bm_open_buffer()
event_id
Event ID for requested events. Use EVENTID_ALL to receive events with any ID.
trigger_mask
Trigger mask for requested events. The requested events must have at least one bit in its trigger mask common with the requested trigger mask. Use TRIGGER_ALL to receive events with any trigger mask.
sampling_type
Specifies how many events to receive. A value of GET_ALL receives all events which match the specified event ID and trigger mask. If the events are consumed slower than produced, the producer is automatically slowed down. A value of GET_SOME receives as much events as possible without slowing down the producer. GET_ALL is typically used by the logger, while GET_SOME is typically used by analyzers.
request_id
Request ID returned by the function. This ID is passed to the callback routine and must be used in the bm_delete_request() routine.
func
Callback routine which gets called when an event of the specified type is received.
Return value
BM_SUCCESS�Successful completion��BM_NO_MEMORY�Too many requests. The value MAX_EVENT_REQUESTS in midas.h should be increased.��BM_INVALID_HANDLE�Invalid buffer handle��Remarks
Multiple event requests can be placed for each buffer, which are later identified by their request ID. They can contain different callback routines.
Example
see bm_open_buffer and bm_receive_event
�bm_send_event
Sends an event to a buffer.
Syntax
INT bm_send_event(INT buffer_handle, � void *source, � INT buffer_size, � INT async_flag)
Parameters
buffer_handle
Buffer handle obtained via bm_open_buffer()
source
Address of event buffer
buffer_size
Size of event including event header in bytes
async_flag
Synchronous/asynchronous flag. If FALSE, the function blocks if the buffer has not enough free space to receive the event. If TRUE, the function returns immediately with a value of BM_ASYNC_RETURN without writing the event to the buffer.
Return value
BM_SUCCESS�Successful completion��BM_INVALID_HANDLE�Invalid buffer handle��BM_INVALID_PARAM�Buffer size doesn’t match data size in event header��BM_ASYNC_RETURN�Routine called with async_flag == TRUE and buffer has not enough space to receive event��BM_NO_MEMORY�Event is too large for network buffer or event buffer. One has to increase MAX_EVENT_SIZE or EVENT_BUFFER_SIZE in midas.h and recompile.��Remarks
This function check if the buffer has enough space for the event, then copies the event to the buffer in shared memory. If clients have requests for the event, they are notified via an UDP packet.
Example
char event[1000];�� /* create event with ID 1, trigger mask 0,� size 100 bytes and serial number 1 */� bm_compose_event((EVENT_HEADER *) event,� 1, 0, 100, 1);�� /* set first byte of event */� *(event+sizeof(EVENT_HEADER)) = <...>��#include <stdio.h>�#include "midas.h"�� main() �{�INT status, i;�HNDLE hbuf;�char event[1000];�� status = cm_connect_experiment("", "Sample",� "Producer", NULL);� if (status != CM_SUCCESS)� return 1;�� bm_open_buffer(EVENT_BUFFER_NAME, EVENT_BUFFER_SIZE,� &hbuf);� � /* create event with ID 1, trigger mask 0,� size 100 bytes and serial number 1 */� bm_compose_event((EVENT_HEADER *) event,� 1, 0, 100, 1);� � /* set event data */� for (i=0 ; i<100 ; i++)� *(event+sizeof(EVENT_HEADER)+i) = i;�� /* send event */� bm_send_event(hbuf, event, 100+sizeof(EVENT_HEADER),� SYNC);�� cm_disconnect_experiment();�� return 0;�}
�bm_set_cache_size
Modifies buffer cache size.
Syntax
bm_set_cache_size(INT buffer_handle,� INT read_size,� INT write_size)
Parameters
buffer_handle
Buffer handle obtained via bm_open_buffer()
read_size
Cache size for reading events in bytes, zero for no cache
write_size
Cache size for writing events in bytes, zero for no cache
Return value
BM_SUCCESS�Successful completion��BM_INVALID_HANDLE�Invalid buffer handle��BM_NO_MEMORY�Not enough memory to allocate cache��BM_INVALID_PARAM�Cache size negative or too big��Remarks
Without a buffer cache, events are copied to/from the shared memory event by event. To protect processed from accessing the shared memory simultaneously, semaphores are used. Since semaphore operations are CPU consuming (typically 50-100ms) this can slow down the data transfer especially for small events. By using a cache the number of semaphore operations is reduced dramatically. Instead writing directly to the shared memory, the events are copied to a local cache buffer. When this buffer is full, it is copied to the shared memory in one operation. The same technique can be used when receiving events.
The drawback of this method is that the events have to be copied twice, once to the cache and once from the cache to the shared memory. Therefore it can happen that the usage of a cache even slows down data throughput on a given environment (computer type, OS type, event size). The cache size has therefore be optimized manually to maximize data throughput.
Example
/*set write cache size to 100k, no read cache*/� bm_set_cache_size(hbuf, 0, 100000);
�cm_connect_client
Connects to a remote client.
Syntax
cm_connect_client(char *client_name,� HNDLE *conn_handle)
Parameters
client_name
Name of remote client as specified by the remote client in the cm_connect_experiment() call
conn_handle
Handle for this connection, can be used in future calls to rpc_client_call().
Return value
CM_SUCCESS�Successful completion��CM_NO_CLIENT�Client name not found��RPC_NET_ERROR�Network error��RPC_NO_CONNECTION�Maximum number of connections exceeded��RPC_NOT_REGISTERED�cm_connect_experiment() has not been called��Remarks
This function opens a TCP connection to a remote client (not the server!). This way clients can issue RPC calls to each other. See rpc_client_call() for a description how to register RPC functions.
Client connections should be closed when not needed any more since the maximum number of open connections is limited to 10 (MAX_RPC_CONNECTION in midas.h)
Example
See rpc_client_call().
�cm_connect_experiment
Connects to a MIDAS experiment.
Syntax
INT cm_connect_experiment(char *host_name,� char *exp_name, char *client_name,� void (*func)(char*))
Parameters
host_name
Specifies host to connect to. Must be a valid IP host name. The string can be empty ("") if to connect to the local computer.
exp_name
Specifies the experiment to connect to. If this string is empty, the number of defined experiments in exptab is checked. If only one experiment is defined, the function automatically connects to this one. If more than one experiment is defined, a list is presented and the user can interactively select one experiment.
client_name
Client name of the calling program as it can be seen by others (like the scl command in ODBEdit).
func
Callback function to read in a password if security has been enabled. In all command line applications this function is NULL which invokes an internal ss_gets() function to read in a password. In windows environments (MS Windows, X Windows) a function can be supplied to open a dialog box and read in the password. The argument of this function must be the returned password.
Return value
CM_SUCCESS�Successful completion��CM_UNDEF_EXP�Undefined experiment��CM_SET_ERROR�Error in cm_set_client_info()��CM_VERSION_MISMATCH�MIDAS library version different on local and remote computer��RPC_NET_ERROR�Network error, invalid host name��Remarks
This function connects to an existing MIDAS experiment. This must be the first call in a MIDAS application. It opens three TCP connection to the remote host (one for RPC calls, one to send events and one for hot-link notifications from the remote host) and writes client information into the ODB under /System/Clients.
All MIDAS applications should evaluate the MIDAS_SERVER_HOST and MIDAS_EXPT_NAME environment variables as defaults to the host name and experiment name. For that purpose, the function cm_get_environment() should be called prior to cm_connect_experiment(). If command line parameters -h and -e are used, the evaluation should be done between cm_get_environment() and cm_connect_experiment(). The function cm_disconnect_experiment() must be called before a MIDAS application exits.
Example
#include <stdio.h>�#include <midas.h>��main(int argc, char *argv[]) �{�INT status, i;�char host_name[256],exp_name[32]; � � /* get default values from environment */� cm_get_environment(host_name, exp_name);� � /* parse command line parameters */� for (i=1 ; i<argc ; i++) � {� if (argv[i][0] == '-') � {� if (i+1 >= argc || argv[i+1][0] == '-')� goto usage;� if (argv[i][1] == 'e')� strcpy(exp_name, argv[++i]);� else if (argv[i][1] == 'h')� strcpy(host_name, argv[++i]);� else � {�usage:� printf("usage: test [-h Hostname] \�[-e Experiment]\n\n");� return 1;� }� }� }�� status = cm_connect_experiment(host_name,� exp_name, "Test", NULL);� if (status != CM_SUCCESS)� return 1;�� <...do operations...>�� cm_disconnect_experiment();�}
�cm_disconnect_client
Disconnects from remote client.
Syntax
cm_disconnect_client(HNDLE conn_handle,� BOOL shutdown)
Parameters
conn_handle
Connection handle obtained via cm_connect_client()
shutdown
Shutdown flag. If TRUE, the remote clients exits its main loop after closing the connection (via RPC_SHUTDOWN returned from cm_yield())
Return value
RPC_SUCCESS�Successful completion��Remarks
An alternative way of shutting down a client is the function cm_shutdown().
Example
See rpc_client_call().
�cm_disconnect_experiment
Disconnect from a MIDAS experiment
Syntax
cm_disconnect_experiment()
Parameters
none
Return value
CM_SUCCESS�Successful completion��Remarks
Should be the last call to a MIDAS library function in an application before it exits. This function removes the client information from the ODB, disconnects all TCP connections and frees all internal allocated memory.
Example
See cm_connect_experiment()
�cm_enable_watchdog
Enable/disables watchdog system.
Syntax
cm_enable_watchdog(BOOL flag)
Parameters
flag
TRUE enables watchdog, FALSE disables it
Return value
CM_SUCCESS�Successful completion��Remarks
The watchdog system uses timers on Windows NT and the alarm() signal under UNIX to check periodically for hanging clients. The alarm() signal has the disadvantage that it can interrupt some operations like tape mounting. Therefore the watchdog has to be disabled before any tape operation occurs. This is done by the logger using the cm_enable_watchdog() function and should be done by the user code for similar operations.
Example
cm_enable_watchdog(FALSE);��<rewind tape> ��cm_enable_watchdog(TRUE);
�cm_execute
Executes command on back-end.
Syntax
cm_execute(char *command, char *result,� INT bufsize)
Parameters
command
Command to execute
result
ASCII buffer which receives result of command
bufsize
Size of result buffer
Return value
CM_SUCCESS�Successful completion��Remarks
The function uses the system() call on the back-end to execute a command. The result is written to a temporary file and transferred back to the calling client.
Example
char result[1000];��cm_execute("ls -l", result, 1000);�printf(result);
�cm_exist
Checks if client exists.
Syntax
cm_exist(char *name, BOOL unique)
Parameters
name
Client name as specified by the client in its cm_connect_experiment() call
unique
If TRUE, look for the exact client name. If FALSE, look for namexxx where xxx is any number
Return value
CM_SUCCESS�Client found��CM_NO_CLIENT�Client not found��Remarks
This function checks the /System/Clients ODB tree for a specific client. If clients are started several times, their client name gets a number appended like ODBEdit1, ODBEdit2 etc. to distinguish between them. The unique flag can be used so search clients disregarding their number when FALSE.
�cm_get_environment
Returns MIDAS environment variables.
Syntax
cm_get_environment(char *host_name,� char *exp_name)
Parameters
host_name
Contents of MIDAS_SERVER_HOST environment variable
exp_name
Contents of MIDAS_EXPT_NAME environment variable
Return value
CM_SUCCESS�Successful completion��Remarks
This function can be used to evaluate the standard MIDAS environment variables before connecting to an experiment. The usual way is that the host name and experiment name are first derived from the environment variables MIDAS_SERVER_HOST and MIDAS_EXPT_NAME. They can then be superseded by command line parameters with -h and -e flags.
Example
#include <stdio.h>�#include <midas.h>��main(int argc, char *argv[]) �{�INT status, i;�char host_name[256],exp_name[32]; � � /* get default values from environment */� cm_get_environment(host_name, exp_name);� � /* parse command line parameters */� for (i=1 ; i<argc ; i++) � {� if (argv[i][0] == '-') � {� if (i+1 >= argc || argv[i+1][0] == '-')� goto usage;� if (argv[i][1] == 'e')� strcpy(exp_name, argv[++i]);� else if (argv[i][1] == 'h')� strcpy(host_name, argv[++i]);� else � {�usage:� printf("usage: test [-h Hostname] \�[-e Experiment]\n\n");� return 1;� }� }� }�� status = cm_connect_experiment(host_name,� exp_name, "Test", NULL);� if (status != CM_SUCCESS)� return 1;��<...do anyting...>�� cm_disconnect_experiment();�}
�cm_get_experiment_database
Returns a handle for the ODB.
Syntax
cm_get_experiment_database(HNDLE *hDB,� HNDLE *hkeyclient)
Parameters
hDB
Handle to ODB
hkeyclient
Handle to key for client entry under /System/Clients/<pid>
Return value
CM_SUCCESS�Successful completion��Remarks
This function returns the handle to the online database (ODB) which can be used in future db_xxx() calls. The hkeyclient key handle can be used to access the client information in the ODB. If the client key handle is not needed, the parameter can be NULL.
Example
HNDLE hDB, hkeyclient;�char name[32];�int size;��db_get_experiment_database(&hdb, &hkeyclient);��size = sizeof(name);�db_get_value(hdb, hkeyclient, "Name", name,� &size, TID_STRING);�printf("My name is %s\n", name);
�cm_msg
Creates a system message.
Syntax
cm_msg(<type>, char *routine, � char *format, ...)
Parameters
<type>
Message type. The macros MERROR, MINFO, MDEBUG, MUSER, MLOG, MTALK and MCALL can be used. They expand to a message id, the file name and line number where the message is created.
routine
String containing the routine name where the message is produced.
format
Format string similar to the printf() function
...
Optional parameters following the format (like in printf())
Return value
void���Remarks
This function should be used for all information and error messages in a MIDAS application since the messages are distributed to all clients and written to the file /Logger/Data dir + /Logger/Message File by the MIDAS logger.
The message <type> is actually a macro which causes the current file name and line number to be contained in error messages. It can be the following:
MERROR	Error messages containing file name and line number
MINFO	Info message
MDEBUG	Debug message only written to the “SYSMSG” buffer but not logged
MUSER	Message produced by user via ODBEdit commands msg or chat
MLOG	Info message which is only logged but not distributed
MTALK	Message which should be forwarded to a text-to-speech system (if present)
MCALL	Message which should be forwarded to a paging system (if present)
Example
cm_msg(MERROR, "main", "Cannot start run %d",� run_number);
�cm_msg_register
Registers a callback function for system messages.
Syntax
cm_msg_register(void� (*func)(HNDLE,HNDLE,EVENT_HEADER*,void*))
Parameters
func
Callback function
Return value
same as bm_open_buffer and bm_request_event��Remarks
This function uses internally bm_open_buffer() and bm_request_event() with the “SYSMSG” buffer to receive message “events”. The callback function has therefore the same parameters as the callback function described under bm_request_event():
func(HNDLE hbuf, HNDLE request_id,� EVENT_HEADER pheader, void *message)
where pevent points to the event header and message to the ASCII string of the message. Following header entries are used:
pheader->event_id�set to EVENTID_MESSAGE (0x8003)��pheader->trigger_mask�message type ID, can be MT_ERROR, MT_INFO, MT_DEBUG, MT_USER, MT_LOG, MT_TALK or MT_CALL as defined in midas.h.��pheader->serial_number�zero��pheader->data_size�Message string length plus one��pheader->time_stamp�Time of message creation��Example
void process_message(HNDLE hBuf, HNDLE id,� EVENT_HEADER *pheader, void *message)�{� if (pheader->trigger_mask == MT_ERROR)� printf("Error: %s\n", message);� else� printf("Info: %s\n", message);�}��main() {� ...� cm_msg_register(process_message);� ...�}
�cm_register_function
Registers a RPC callback function.
Syntax
cm_register_function(INT rpc_id,� INT (*func)(INT,void**))
Parameters
rpc_id
RPC ID
func
Callback function
Return value
CM_SUCCESS�Successful completion��RPC_INVALID_ID�RPC ID not defined in mrpc.h��Remarks
This function registers internally a callback function for a specific RPC ID and publishes the RPC ID under /System/Clients/<pid>/RPC/<RPC ID> to be visible to others.
The callback function has following parameters:
func (INT index, void *prpc_param[])
where index is the RPC ID and prpc_param is an array of pointers to the function parameters. Using the index, one callback can be defined for several functions and use a switch(index) statement to call the corresponding functions as it is done in the main MIDAS server mserver.c. The parameters can be converted from the pointer array to real parameters with the C<type> and CP<type> macros for values and pointer to values.
Example
See rpc_client_call()
�cm_register_transition
Registers a callback function for run transitions.
Syntax
cm_register_transition(INT transition,� INT (*func)(INT,char*))
Parameters
transition
Transition to register for. Can be TR_PRESTART, TR_START, TR_POSTSTART, TR_PRSTOP, TR_STOP, TR_POSTSTOP, TR_PAUSE or TR_RESUME.
func
Callback function
Return value
CM_SUCCESS�Successful completion��Remarks
This function internally registers the transition callback function and publishes its request for transition notification by writing the transition bit to /System/Clients/<pid>/Transition Mask. Other clients making a transition scan the transition masks of all clients and call their transition callbacks via RPC.
Clients can register for transitions (Start/Stop/Pause/Resume) or for notifications before or after a transition occurs (Pre-start/Post-start/Pre-stop/Post-stop). The logger for example opens the logging files on pre-start and closes them on post-stop.
The callback function returns SUCCESS if it can perform the transition or a value larger than one in case of error. An error string can be copied into the error variable.
The callback function will be called on transitions from inside the cm_yield() function which therefore must be contained in the main program loop.
Example
INT start(INT run_number, char *error) �{� if (<not ok>) � {� strcpy(error, "Cannot start because ...");� return 2;� }�� printf("Starting run %d\n", run_number);� return SUCCESS;�}��main()�{� ...� cm_register_transition(TR_START, start);�� do � {� status = cm_yield(1000);� } while (status != RPC_SHUTDOWN &&� status != SS_ABORT);�� ...�}
�cm_set_watchdog_params
Sets the watchdog parameters.
Syntax
cm_set_watchdog_params(BOOL call_watchdog,� INT timeout)
Parameters
call_watchdog
This flag specifies if the watchdog function should be called.
timeout
Time-out in milliseconds before other clients consider the calling program as being “dead”.
Return value
CM_SUCCESS�Successful completion��Remarks
The MIDAS watchdog system consists of a function which is called once every second by all MIDAS applications. This function is called asynchronously via times under Windows NT and the alarm signal under UNIX and performs two tasks. It first signal that the current client is “alive” by writing the current time to the shared memory of the ODB and the event buffers. Then the function checks if all other clients which have an client entry in the ODB are alive by comparing the time they wrote to the shared memory with the actual time. If a certain time-out is reached, the other application is considered dead and its client entries are removed from the event buffers and the ODB.
The function cm_set_watchdog_params() sets this time-out value and tells the system if the own watchdog function should be called regularly. Normally the default values don’t have to be modified except for two cases:
The alarm signal cannot be delivered under UNIX. This is the case if a program is debugged and stops at a breakpoint or the program performs a lengthy IO operation like mounting a tape.
The alarm signal cannot be used in the program because it is used elsewhere.
In the first case the watchdog time-out has to be set to zero which causes the application not being checked by others. This can be done in most MIDAS applications with the -d flag (“debug”). Of course it can now happen that an application crashes inside the debugger and its event requests remain forever in the event buffer. In this case the ODBEdit command cleanup can be used to remove client entries independent of their time-out.
The watchdog time-out can be increased if the program performs lengthy IO operations like tape rewinds etc. The logger for examples increases the time-out to LOGGER_TIMEOUT which is usually 60 seconds.
In the second case the alarm signal has to be switched off by calling
cm_set_watchdog_params(FALSE,� DEFAULT_WATCHDOG_TIMEOUT);
and then the watchdog function has to be called manually at least once every second with
cm_watchdog(0);
so that the application can signal its alive status.
�cm_shutdown
Shuts down another client.
Syntax
cm_shutdown(char *client_name)
Parameters
client_name
Name of the client to shut down
Return value
CM_SUCCESS�Client shut down successfully��CM_NO_CLIENT�Client not found��DB_NO_KEY�No /System/Clients entry in ODB��Remarks
This function is used by the ODBEdit command shutdown.
Example
cm_shutdown("Logger");
�cm_synchronize
Synchronizes the time between a remote client and the back-end.
Syntax
cm_syncronize(DWORD time)
Parameters
time
Returns the time of the back-end in seconds since 1.1.1970 if not NULL.
Return value
CM_SUCCESS�Successful completion��Remarks
To set the local time, the system function ss_settime() is used which is not available on all operating systems.
�cm_transition
Performs a run transition (Start/Stop/Pause/Resume).
Syntax
cm_transition(INT transition, INT run_number,� char *error, INT strsize,� INT async_flag)
Parameters
transition
Transition to perform, either TR_START, TR_STOP, TR_PAUSE or TR_RESUME.
run_number
New run number for TR_START transitions.
error
String containing error description if a client cannot perform a transition.
strsize
Size of error string.
async_flag
Synchronous/Asynchronous flag. If set to ASYNC, the transition is done asynchronously, meaning that clients are connected and told to execute their callback routine, but no result is awaited.
Return value
The return value is specified by the transition callback function on the remote clients. If all callbacks can perform the transition, CM_SUCCESS is returned. If one callback cannot perform the transition, the return value of this callback is returned from cm_transition().
Remarks
This function scans /System/Clients/<pid>/Transition Mask if a client is interested in the current transition. If so, it opens a connection to that client and calls its transition callback via RPC. On successful completion, it updates the /Runinfo entry in the ODB. It then creates an information message and locks/unlocks ODB entries under /Experiment/Lock when running.
The anync_flag is usually FALSE so that transition callbacks can block a run transition in case of problems and return an error string. The only exception are situations where a run transition is performed automatically by a program which cannot block in a transition. For example the logger can cause a run stop when a disk is nearly full but it cannot block in the cm_transition() function since it has its own run stop callback which must flush buffers and close disk files and tapes.
Example
INT status;�char error[256];��status = cm_transition(TR_START, 123, error,� sizeof(error), SYNC);��if (status != SUCCESS)� prinf("Cannot start run: %s\n", error);
�cm_yield
Calls MIDAS scheduler
Syntax
cm_yield(INT timeout)
Parameters
timeout
Time after which the function must return.
Return value
CM_SUCCESS�Successful completion��RPC_SHUTDOWN�Program is shut down by other client via cm_shutdown()��SS_ABORT�Network connection to server aborted��Remarks
This is the standard main loop in a MIDAS program. Since the system is event based, a central routine has to be called periodically to receive and distribute these events. If an event is received which matches a request, the according callback routine is executed.
The loop can be exited when the network connection breaks (SS_ABORT) or the program is shut down by another program (RPC_SHUTDOWN).
The time-out parameter to cm_yield is in milliseconds. If an MIDAS application needs other things to do like processing keystrokes, the time-out can be set to a small value like 10ms. This causes cm_yield to return after 10ms if no events are received. The application can then perform other operations in the main loop. As an alternative the routine cmd_edit from cmdedit.c can be called which reads a command line and calls cm_yield() periodically when idle.
Example
do� {� status = cm_yield(1000);� } while (status != RPC_SHUTDOWN &&� status != SS_ABORT);
�db_copy
Copies part of the ODB into an ASCII string.
Syntax
db_copy(HNDLE hDB, HNDLE hkey, char *buffer,� INT *buffer_size, char *path)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle from which the copy operation is started, zero for ODB root.
buffer
ASCII buffer which receives ODB contents
buffer_size
Size of buffer in bytes. Upon return, this value contains the number of remaining bytes in the buffer not used by the string.
path
Internal use only, must be empty (“”)
Return value
DB_SUCCESS�Successful completion��DB_TRUNCATED�Output buffer too small, data truncated��Remarks
This function converts the binary ODB contents to an ASCII representation� XE "ASCII representation" � of the form:
[ODB path]�key name = type : value
for single values and
key name = STRING : [size] string contents
for strings and
kew name = type[size] :�[0] value0�[1] value1�[2] value2�...
for arrays. type can be BYTE, SBYTE, CHAR, WORD, SHORT, DWORD, INT, BOOL, FLOAT, DOUBLE, STRING or LINK.
The /Runinfo directory of the ODB is for example converted to:
[Runinfo]�State = INT : 1�Online Mode = INT : 1�Run number = INT : 5�Transition in progress = INT : 0�Start time = STRING : [32] Wed Jan 21 14:58:42 1998�Start time binary = DWORD : 885398322�Stop time = STRING : [32] Wed Jan 21 15:15:04 1998
The function db_paste() can be used to covert the ASCII representation back to binary ODB contents. The functions db_load() and db_save() internally use db_copy() and db_paste().
Example
char buffer[1000];�HNDL hkey;�INT size;��db_find_key(hDB, 0, "Runinfo", &hkey);�size = sizeof(buffer);�db_copy(hDB, hkey, buffer, &size, "");�printf(buffer);
�db_create_key
Creates a key in the ODB.
Syntax
db_create_key(HNDLE hDB, HNDLE hkey, � char *key_name, DWORD type)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Parent key under which the new key should be created, zero for root.
key_name
Key name
type
Key type, one of the TID_xxx values in midas.h
Return value
DB_SUCCESS�Successful completion��DB_FULL�ODB is full��DB_KEY_EXIST�Key exists already��DB_NO_ACCESS�Parent key is write locked��Remarks
The key name can contain a whole directory structure in the form /directory/directory/.../key. The intermediate directories are created together with the key.
Example
Using a parent key
HNDLE hkey;�� db_find_key(hdb, 0, � "/Experiment/Run parameters", &hkey);�� db_create_key(hdb, hkey, "Comment",� TID_STRING);�
Using a directory in the key name
db_create_key(hDB, 0,� "/Experiment/Run parameters/Comment",� TID_STRING);
�db_create_link
Creates an ODB link.
Syntax
db_create_link(HNDLE hDB, HNDLE hkey,� char *link_name,� char *destination)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Parent key under which the new link should be created, zero for root.
link_name
Name of the link
destination
Target to which the link is pointing
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database handle��DB_FULL�ODB is full��DB_KEY_EXIST�Key exists already��DB_NO_ACCESS�Parent key is write locked��Remarks
ODB links can be used for references inside the ODB. ODB links are similar to symbolic links in UNIX file systems. When a link is opened for reading, the contents of the link target is returned. This can be advantageous for applications which expect keys to be in a certain directory. For example the function cm_transition() locks all keys which are under /Experiment/Lock when running/ when a run is started. If this directory contains links pointing to various keys scattered around the ODB, these keys are locked instead of the links.
The functions db_find_key(), db_enum_key() and db_scan_tree() follow links, meaning that they never will return the handle to a link but a handle to the target of a link instead. If links have to be accessed, the functions db_find_link(), db_enum_link() and db_scan_tree_link() have to be used instead.
Example
db_create_line(hDB, 0, � "/Experiment/Lock when running/Level",� "/Equipment/Trigger/Settings/Level");
�db_create_record
Creates an ODB sub-tree from an ASCII representation
Syntax
db_create_record(HNDLE hDB, HNDLE hkey,� char *key_name, � char *init_str)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Parent key under which sub-tree should be created
key_name
ODB Sub-tree root name relative to hkey
init_str
ASCII representation of ODB sub-tree
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database handle��DB_FULL�ODB is full��DB_NO_ACCESS�Key or parent key is write locked��DB_INVALID_HANDLE�Invalid ��DB_OPEN_RECORD�Key or one of its sub-keys is currently open in a hot-link��Remarks
This functions creates a ODB sub-tree according to an ASCII representation of that tree. See db_copy() for a description. It can be used to create a sub-tree which exactly matches a C structure. The sub-tree can then later mapped to the C structure (“hot-link”) via the function db_open_record().
If a sub-tree exists already which exactly matches the ASCII representation, it is not modified. If part of the tree exists, it is merged with the ASCII representation where the ODB values have priority, only values not present in the ODB are created with the default values of the ASCII representation. It is therefore recommended that before creating an ODB hot-link the function db_create_record() is called to insure that the ODB tree and the C structure contain exactly the same values in the same order.
Following example creates a record under /Equipment/Trigger/Settings, opens a hot-link between that record and a local C structure trigger_settings and registers a callback function trigger_update() which gets called each time the record is changed.
Example
struct {� INT level1;� INT level2;�} trigger_settings;��char *trigger_settings_str =�"[Settings]\n\�level1 = INT : 0\n\�level2 = INT : 0";��void trigger_update(INT hDB, INT hkey)�{� printf("New levels: %d %d\n",� trigger_settings.level1,� trigger_settings.level2);�}��main()�{�HNDLE hDB, hkey;�� ...� cm_get_experiment_database(&hDB, NULL);�� db_create_record(hDB, 0, "/Equipment/Trigger",� trigger_settings_str);�� db_find_key(hDB, 0,� "/Equipment/Trigger/Settings", &hkey);�� db_open_record(hDB, hkey, &trigger_settings,� sizeof(trigger_settings), MODE_READ,� trigger_update);� ...�}
�db_delete_key
Deletes a key in the ODB
Syntax
db_delete_key(HNDLE hDB, HNDLE hkey,� BOOL follow_links)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Handle of key to delete
flollow_links
If TRUE, follow a link and delete its target. If FALSE, only delete link.
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database handle��DB_NO_ACCESS�Key or parent key is locked for deletion��DB_OPEN_RECORD�Key, parent key or one of its sub-keys is currently open in a hot-link��Remarks
If hkey corresponds to a directory, the whole sub-tree is deleted.
�db_enum_key
Enumerates keys in a ODB directory.
Syntax
db_enum_key(HNDLE hDB, HNDLE hkey, INT index,� HNDLE *hsubkey)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Handle of key to enumerate, zero for root
index
Index of sub-key to return
hsubkey
Returned sub-key, zero if no more sub-keys exist
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database handle��DB_NO_MORE_SUBKEYS�No more sub-keys available��Remarks
khey must correspond to a valid ODB directory. The index is usually incremented in a loop until the last key is reached. Information about the sub-keys can be obtained with db_get_key(). If a returned key is of type TID_KEY, it contains itself sub-keys. To scan a whole ODB sub-tree, the function db_scan_tree() can be used.
Example
INT i;�HNDLE hkey, hsubkey;�KEY key;�� db_find_key(hdb, 0, "/Runinfo", &hkey);� for (i=0 ; ; i++) � {� db_enum_key(hdb, hkey, i, &hsubkey);� if (!hSubkey)� break; /* end of list reached */�� /* print key name */� db_get_key(hdb, hkey, &key);� printf("%s\n", key.name);� }
�db_find_key
Returns key handle for a key with a specific name.
Syntax
db_find_key(HNDLE hDB, HNDLE hkey,� char *key_name, HNDLE *hsubkey)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Handle for key where search starts, zero for root
key_name
Name of key to search, can contain directories
hsubkey
Returned handle of key, zero if key cannot be found
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database handle��DB_NO_ACCESS�Key has no read access��DB_NO_KEY�Key does not exist��Remarks
Keys can be accessed by their name including the directory or by a handle. A key handle is an internal offset to the shared memory where the ODB lives and allows a much faster access to a key than via its name. The function db_find_key() must be used to convert a key name to a handle. Most other database functions use this key handle in various operations.
Example
HNDLE hkey, hsubkey;��/* use full name, start from root */�db_find_key(hDB, 0, "/Runinfo/Run number",� &hkey);��/* start from subdirectory */�db_find_key(hDB, 0, "/Runinfo", &hkey);�db_find_key(hdb, hkey, "Run number", &hsubkey);
�db_get_data
Returns data from a key.
Syntax
db_get_data(HNDLE hDB, HNDLE hkey, � void *buffer, INT *buffer_size,� DWORD type)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle
buffer
Buffer where data gets written to
buffer_size
Maximum buffer size on input, number of written bytes on return
type
TID_xxx value, has to match key type in ODB
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��DB_TYPE_MISMATCH�type does not match type in ODB��DB_TRUNCATED�Data does not fit in buffer and has been truncated��Remarks
The function returns single values or whole arrays which are contained in an ODB key. Since the data buffer is of type void, no type checking can be performed by the compiler. Therefore the type has to be explicitly supplied, which is checked against the type stored in the ODB.
Example
HNLDE hkey;�INT run_number, size;��/* get key handle for run number */�db_find_key(hDB, 0, "/Runinfo/Run number", &hkey);��/* return run number */�size = sizeof(run_number);�db_get_data(hDB, hkey, &run_number, &size,TID_INT);
�db_get_data_index
Returns data from a key containing an array
Syntax
db_get_data_index(HNDLE hDB, HNDLE hkey,� void *buffer,� INT *buffer_size,� INT index, DWORD type)
Parameters
hkey
Key handle
buffer
Buffer where data gets written to
buffer_size
Maximum buffer size on input, number of written bytes on return
index
Array index, between zero and n-1 where n is the array size
type
TID_xxx value, has to match key type in ODB
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��DB_TYPE_MISMATCH�type does not match type in ODB��DB_TRUNCATED�Data does not fit in buffer and has been truncated��DB_OUT_OF_RANGE�Index larger than array size or negative��Remarks
The function returns a single value of keys containing arrays of values.
�db_get_key
Returns information about an ODB key.
Syntax
db_get_key(HNDLE hDB, HNDLE hkey, KEY *key)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle
key
Pointer to KEY structure receiving key information.
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANLDE�Invalid database or key handle��Remarks
The KEY structure has following format:
typedef struct {� DWORD type; /* TID_xxx type */� INT num_values; /* number of values */� char name[NAME_LENGTH]; /* name of variable */� INT data; /* Data address (offset)*/� INT total_size; /* Total size of data */� INT item_size; /* Size of single value */� WORD access_mode; /* Access mode */� WORD lock_mode; /* Lock mode */� WORD exclusive_client; /* Index of client in */� /* exclusive . mode */� WORD notify_count; /* Notify counter */� INT next_key; /* Address of next key */� INT parent_keylist; /* Parent keylist */� INT last_written; /* Time of last write */� /* operation */�} KEY;
Most of these values are used for internal purposes, the values which are of public interest are type, num_values, and name. For keys which contain a single value, num_values equals to one and total_size equals to item_size. For keys which contain an array of strings (TID_STRING), item_size equals to the length of one string.
Example
KEY key;�HNDLE hkey;��db_find_key(hDB, 0, "/Runinfo/Run number",� &hkey);�db_get_key(hDB, hkey, &key);�printf("The run number is of type %s\n",� rpc_tid_name(key.type));
�db_get_key_time
Returns time when a key was last modified.
Syntax
db_get_key_time(HNDLE hDB, HNDLE hkey,� DWORD *time)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle
time
Time in seconds since key was last time written
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANLDE�Invalid database or key handle��Remarks
This function can be used to check if a ODB key is updated periodically by a front-end.
�db_get_record
Copies an ODB sub-tree to a local C structure.
Syntax
db_get_record(HNDLE hDB, HNDLE hkey,� void *structure,� INT *struct_size, INT align)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle of ODB sub-tree
structure
Address of destination structure
struct_size
Size of structure calculated with sizeof(structure) which is checked against the ODB tree size.
align
Internal use only, must be zero
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANLDE�Invalid database or key handle��DB_STRUCT_SIZE_MISMATCH�Structure size does not match sub-tree size��Remarks
An ODB sub-tree can be mapped to a C structure automatically via a hot-link using the function db_open_record() or manually with this function. Problems might occur if the ODB sub-tree contains values which don’t match the C structure. Although the structure size is checked against the sub-tree size, no checking can be done if the type and order of the values in the structure are the same than those in the ODB sub-tree. Therefore it is recommended to use the function db_create_record() before db_get_record() is used which ensures that both are equivalent.
Example
struct {� INT level1;� INT level2;�} trigger_settings;��char *trigger_settings_str =�"[Settings]\n\�level1 = INT : 0\n\�level2 = INT : 0";�� �main()�{�HNDLE hDB, hkey;�INT size;�� ...� cm_get_experiment_database(&hDB, NULL);�� db_create_record(hDB, 0,� "/Equipment/Trigger",� trigger_settings_str);�� db_find_key(hDB, 0,� "/Equipment/Trigger/Settings", &hkey);�� size = sizeof(trigger_settings);� db_get_record(hDB, hkey,� &trigger_settings, &size, 0);� ...�}
�db_get_value
Returns key data from the ODB.
Syntax
db_get_value(HNDLE hDB, HNDLE hkey, � char *key_name, void *buffer,� INT *buffer_size, DWORD type)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle relative to which key_name is interpreted, zero for root
key_name
Key name, can contain directories
buffer
Buffer where data gets written to
buffer_size
Maximum buffer size on input, number of written bytes on return
type
TID_xxx value, has to match key type in ODB
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��DB_NO_KEY�key_name does not exist��DB_TYPE_MISMATCH�type does not match type in ODB��DB_TRUNCATED�Data does not fit in buffer and has been truncated��Remarks
The function returns single values or whole arrays which are contained in an ODB key. Since the data buffer is of type void, no type checking can be performed by the compiler. Therefore the type has to be explicitly supplied, which is checked against the type stored in the ODB.
key_name can contain the full path of a key (like "/Equipment/Trigger/Settings/Level1") while hkey is zero which refers to the root, or hkey can refer to a sub-directory (like /Equipment/Trigger) and key_name is interpreted relative to that directory like "Settings/Level1".
Example
INT level1, size;�� size = sizeof(level1);� db_get_value(hDB, 0,� "/Equipment/Trigger/Settings/Level1",� &level1, &size, TID_INT);
�db_load
Loads ODB entries from an ASCII file.
Syntax
db_load(HNDLE hDB, HNDLE hkey, � char *filename, BOOL remote)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Handle of key to start loading, zero for root
filename
File name to load, should have .odb extension
remote
If TRUE, the file is loaded by the server process on the back-end, if FALSE, it is loaded from the current process
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��DB_FILE_ERROR�Filename not found��Remarks
This function is used by the ODBEdit command load. For a description of the ASCII format, see db_copy(). Data can be loaded relative to the root of the ODB (hkey equal zero) or relative to a certain key.
Example
db_load(hDB, 0, "last.odb", FALSE);
�db_open_record
Creates a hot-link between an ODB sub-tree and a C structure.
Syntax
db_open_record(HNDLE hDB, HNDLE hkey, � void *structure, � INT struct_size, � WORD access_mode, � void (*func)(INT,INT))
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle of ODB sub-tree
structure
Address of local structure
struct_size
Size of structure calculated with sizeof(structure) which is checked against the ODB tree size.
access_mode
Access mode, can be MODE_READ or MODE_WRITE or’ed with MODE_ALLOC.
func
Callback function which gets called when ODB sub-tree is modified. NULL for no callback function.
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANLDE�Invalid database or key handle��DB_STRUCT_SIZE_MISMATCH�Structure size does not match sub-tree size��DB_NO_ACCESS�No read/write access to sub-tree��Remarks
This function opens a hot-link between an ODB sub-tree and a local structure. The sub-tree is copied to the structure automatically every time it is modified by someone else. Additionally, a callback function can be declared which is called after the structure has been updated. The callback function receives the database handle and the key handle as parameters.
Problems might occur if the ODB sub-tree contains values which don’t match the C structure. Although the structure size is checked against the sub-tree size, no checking can be done if the type and order of the values in the structure are the same than those in the ODB sub-tree. Therefore it is recommended to use the function db_create_record() before db_open_record() is used which ensures that both are equivalent.
The access mode might either be MODE_READ or MODE_WRITE. In read mode, the ODB sub-tree is automatically copied to the local structure when modified by other clients. In write mode, the local structure is copied to the ODB sub-tree if it has been modified locally. This update has to be manually scheduled by calling db_send_changed_records() periodically in the main loop. The system keeps a copy of the local structure to determine if its contents has been changed.
If MODE_ALLOC is or’ed with the access mode, the memory for the structure is allocated internally. The structure pointer must contain a pointer to a pointer to the structure. The internal memory is released when db_close_record() is called.
Example
To open a record in read mode, see db_create_record()
To open a record in write mode
struct {� INT level1;� INT level2;�} trigger_settings;��char *trigger_settings_str =�"[Settings]\n\�level1 = INT : 0\n\�level2 = INT : 0";��main()�{�HNDLE hDB, hkey, i=0;�� ...� cm_get_experiment_database(&hDB, NULL);� db_create_record(hDB, 0, "/Equipment/Trigger",� trigger_settings_str);� db_find_key(hDB, 0,� "/Equipment/Trigger/Settings", &hkey);� db_open_record(hDB, hkey, &trigger_settings,� sizeof(trigger_settings), MODE_WRITE, NULL);�� do � {� trigger_settings.level1 = i++;� db_send_changed_records()� status = cm_yield(1000);� } while (status != RPC_SHUTDOWN &&� status != SS_ABORT);� ...�}
�db_paste
Pastes values into the ODB from an ASCII string.
Syntax
db_paste(HNDLE hDB, HNDLE hkey, char *buffer)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle from which the paste operation is started, zero for ODB root.
buffer
ASCII buffer from which ODB contents is pasted
Return value
DB_SUCCESS�Successful completion��Remarks
For a description of the ASCII format, see db_copy().
�db_rename_key
Renames a key.
Syntax
db_rename_key(HNDLE hDB, HNDLE hkey,� char *name)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle
name
New key name
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��Remarks
Key names can be maximal 31 characters long (plus a trailing zero).
�db_reorder_key
Changes key order in a ODB directory.
Syntax
db_reorder_key(HNDLE hDB, HNDLE hkey,� INT index)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Handle of key which should be reordered
index
New position in directory starting at zero. If index<0 the key is positioned at the end of the list.
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database handle��DB_NO_ACCESS�Key is write locked��DB_OPEN_RECORD�Key, sub-key or parent key is open in a hot-link��Remarks
The ordering of keys in a directory is also defined by the function db_create_record().
Example
[local]/Runinfo>ls�State 1�Online Mode 1�Run number 5�Transition in progress 0�Start time Wed Jan 21 14:58:42 1998�Start time binary 885398322�Stop time Wed Jan 21 15:15:04 1998�[local]/Runinfo>��...�db_find_key(hDB, "/Runinfo/Online Mode", &hkey);�db_reorder_key(hDB, hkey, 5);��db_find_key(hDB, "/Runinfo/Run number", &hkey);�db_reorder_key(hDB, hkey, -1);�...��[local]/Runinfo>ls�Run number 5�State 1�Transition in progress 0�Start time Wed Jan 21 14:58:42 1998�Start time binary 885398322�Online Mode 1�Stop time Wed Jan 21 15:15:04 1998�[local]/Runinfo>
�db_save
Save ODB entries to an ASCII file.
Syntax
db_save(HNDLE hDB, HNDLE hkey,� char *filename, BOOL bRemote)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Handle of sub-tree to be saved, zero for root
filename
File name to save, should have .odb extension
remote
If TRUE, the file is saved by the server process on the back-end, if FALSE, it is saved from the current process
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��DB_FILE_ERROR�Cannot write file, maybe disk full��Remarks
This function is used by the ODBEdit command save. For a description of the ASCII format, see db_copy(). Data of the whole ODB can be saved (hkey equal zero) or only a sub-tree.
Example
db_save(hDB, 0, "last.odb", FALSE);
�db_scan_tree
Scans ODB sub-tree and executes callback routine for each key.
Syntax
db_scan_tree(HNDLE hDB, HNDLE hkey,� void (*func)(HNDLE,HNDLE,KEY*,void *),� void *info)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
key
Key from which scan should be started. All sub-directories are scanned.
func
Callback function
info
Optional info which is passed to callback function
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANLDE�Invalid database or key handle��Remarks
This function can be used to scan a whole sub-tree of the ODB. Following example prints the names of all keys of a database and passes a string as an optional info.
Example
void callback(HNDLE hDB, HNDLE hkey, KEY *key,� void *info)�{� printf("%s %s\n", info, key.name);�}��main()�{�HNDLE hkey;� ...� db_find_key(hDB, 0, "/Equipment", &hkey);� db_scan_tree(hDB, hkey, callback, "Key names: ");� ...�}
�db_set_data
Sets data of a key.
Syntax
db_set_data(HNDLE hDB, HNDLE hkey,� void *buffer, INT buffer_size,� INT num_values, DWORD type)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle
buffer
Buffer from which data gets copied
buffer_size
Buffer size in bytes
num_values
Number of values contained in buffer, one for single values.
type
TID_xxx value, has to match key type in ODB
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��DB_TYPE_MISMATCH�type does not match type in ODB��DB_NO_ACCESS�No write access to key��Remarks
This function can set single values or whole arrays. If the array length is different from those already in the key, the key array size is adjusted. To set individual values of an array, use db_set_data_index().
Example
HNLDE hkey;�INT run_number;��/* get key handle for run number */�db_find_key(hDB, 0, "/Runinfo/Run number", &hkey);��/* set run number */� db_set_data(hDB, hkey, &run_number,� sizeof(run_number),TID_INT);
�db_set_data_index
Set individual values of a key
Syntax
db_set_data_index(HNDLE hDB, HNDLE hkey, � void *buffer,� INT buffer_size,� INT index, DWORD type)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle
buffer
Buffer from which data gets copied
buffer_size
Buffer size in bytes
index
Array index of value to set, starting with zero.
type
TID_xxx value, has to match key type in ODB
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��DB_TYPE_MISMATCH�type does not match type in ODB��DB_NO_ACCESS�No write access to key��Remarks
This function sets individual values of a key containing an array. If the index is larger than the array size, the array is extended and the intermediate values are set to zero.
�db_set_mode
Sets mode bits for a key.
Syntax
db_set_mode(HNDLE hDB, HNDLE hkey, WORD mode,� BOOL recurse)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle
mode
Mode bits, combination of MODE_READ, MODE_WRITE, MODE_DELETE.
recurse
If TRUE recurse whole sub-tree
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��Remarks
All three mode bits are set by default. They can be removed to deny read, write and delete access. Mode bits can be displayed in ODBEdit with ls -l and modified with chmod.
Example
/* get key handle for run number */�db_find_key(hDB, 0, "/Runinfo/Run number", &hkey);��/* deny write access to run number */�db_set_mode(hDB, hkey, MODE_READ, FALSE);
�db_set_record
Copies a local C structure to a ODB sub-tree.
Syntax
db_set_record(HNDLE hDB, HNDLE hkey,� void *structure, INT struct_size,� INT align)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle of ODB sub-tree
structure
Address of destination structure
struct_size
Size of structure calculated with sizeof(structure) which is checked against the ODB tree size.
align
Internal use only, must be zero
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANLDE�Invalid database or key handle��DB_STRUCT_SIZE_MISMATCH�Structure size does not match sub-tree size��Remarks
An ODB sub-tree can be mapped to a C structure automatically via a hot-link using the function db_open_record() or manually with this function. Problems might occur if the ODB sub-tree contains values which don’t match the C structure. Although the structure size is checked against the sub-tree size, no checking can be done if the type and order of the values in the structure are the same than those in the ODB sub-tree. Therefore it is recommended to use the function db_create_record() before db_get_record() is used which ensures that both are equivalent.
Example
struct {� INT level1;� INT level2;�} trigger_settings;��char *trigger_settings_str =�"[Settings]\n\�level1 = INT : 0\n\�level2 = INT : 0";�� �main()�{�HNDLE hDB, hkey;�� ...� cm_get_experiment_database(&hDB, NULL);�� db_create_record(hDB, 0,� "/Equipment/Trigger",� trigger_settings_str);�� db_find_key(hDB, 0,� "/Equipment/Trigger/Settings", &hkey);�� trigger_settings.level1 = 123;� trigger_settings.level2 = 456;�� db_set_record(hDB, hkey,� &trigger_settings,� sizeof(trigger_settings), 0);� ...�}
�db_set_value
Sets key data in ODB.
Syntax
db_set_value(HNDLE hDB, HNDLE hkey,� char *key_name, void *buffer,� INT buffer_size, INT num_values,� DWORD type)
Parameters
hDB
ODB handle obtained via cm_get_experiment_database()
hkey
Key handle relative to which key_name is interpreted, zero for root
key_name
Key name, can contain directories
buffer
Buffer where data is copied from
buffer_size
Maximum buffer size on input, number of written bytes on return
num_values
Number of values to copy, one for single values.
type
TID_xxx value, has to match key type in ODB
Return value
DB_SUCCESS�Successful completion��DB_INVALID_HANDLE�Invalid database or key handle��DB_NO_KEY�key_name does not exist��DB_TYPE_MISMATCH�type does not match type in ODB��Remarks
The function sets a single value or a whole array to a ODB key. Since the data buffer is of type void, no type checking can be performed by the compiler. Therefore the type has to be explicitly supplied, which is checked against the type stored in the ODB.
key_name can contain the full path of a key (like "/Equipment/Trigger/Settings/Level1") while hkey is zero which refers to the root, or hkey can refer to a sub-directory (like /Equipment/Trigger) and key_name is interpreted relative to that directory like "Settings/Level1".
Example
INT level1;�� db_get_value(hDB, 0,� "/Equipment/Trigger/Settings/Level1",� &level1, sizeof(level1), TID_INT);
�db_sprintf
Convert an ODB entry to a string.
Syntax
db_sprintf(char* string, void *buffer,� INT buffer_size, INT index,� DWORD type)
Parameters
string
Return string, zero terminated
buffer
Address of data
buffer_size
Size of data buffer
index
Array index if data is an array
type
TID_xxx value of data type
Return value
DB_SUCCESS�Successful completion��Remarks
This function is a convenient way to convert a binary ODB value into a string depending on its type if is not known at compile time. If it is known, the normal sprintf() function can be used.
This function is used by ODBEdit to display values with the ls command.
�db_sscanf
Convert a string into a binary value.
Syntax
db_sscanf(char *string, void *buffer,� INT *buffer_size, INT index,� DWORD type)
Parameters
string
String to be scanned
buffer
Address of data
buffer_size
Size of data buffer
index
Array index if data is an array
type
TID_xxx value of data type
Return value
DB_SUCCESS�Successful completion��Remarks
This function can be used to convert a string into a binary ODB value depending on its type if it is not known at compile time. If it is known, the normal sscanf() function can be used.
This function is used by ODBEdit in the set command.
�hs_define_event
Defines an event for the history system.
Syntax
hs_define_event(DWORD event_id, char *name,� TAG *tag, DWORD size)
Parameters
event_id
Event ID used to store and retrieve events. Must be unique.
name
Name of the event
tag
Tag list containing names and types of variables in event
size
Size of tag list in bytes.
Return value
HS_SUCCESS�Successful completion��HS_FILE_ERROR�Cannot open history file, maybe disk full��Remarks
This function must be called to define an event before any call to hs_write_event(). It must also be called if the definition of an event has been changed to redefine the event. The event definition is written to the history file. If the event definition is identical to a previous definition, it is not written to the file.
A tag has following structure:
typedef struct {� char name[NAME_LENGTH];� DWORD type;� DWORD n_data;�} TAG;
where name is the variable name, type is a TID_xxx value and n_data is the number of values in this variable.
This function is called automatically by the MIDAS logger in open_history and converts all /Equipment/<name>/Variables sub-trees into tag lists.
Following example defined an event “Environment” with ID 1 and writes 100 events to a history file. The history file gets the name YYMMDD.hst where YY is the current year, MM the month and DD the day. Together with the history file two index files YYMMDD.idx and YYMMDD.idf are created.
Example
TAG tags[] = {� { "Temperature", TID_FLOAT, 10 },� { "Humidity", TID_FLOAT, 1 },� { "Pressure", TID_FLOAT, 1 },�};��struct {� float temperature[10];� float humidity;� float pressure;�} environment;��main()�{�� hs_define_event(1, "Environment", tags,� sizeof(tags));�� /* write 10 events */� for (i=0 ; i<10 ; i++)� {� /* set dummy data */� environment.temperature[0] = i*0.1;�� hs_write_event(1, &environment,� sizeof(environment));� ss_sleep(1000);� }�}
The contents of the history file can be displayed with the mhist utility:
> mhist -e 1 -v Temperature -i 0��Jan 29 16:15:56 1998 0�Jan 29 16:15:57 1998 0.1�Jan 29 16:15:58 1998 0.2�Jan 29 16:15:59 1998 0.3�Jan 29 16:16:00 1998 0.4�Jan 29 16:16:01 1998 0.5�Jan 29 16:16:02 1998 0.6�Jan 29 16:16:03 1998 0.7�Jan 29 16:16:04 1998 0.8�Jan 29 16:16:05 1998 0.9
�hs_dump
Displays complete history events.
Syntax
hs_dump(DWORD event_id, � DWORD start_time, DWORD end_time,� DWORD interval)
Parameters
event_id
Event ID
start_time
Start time for history display in seconds since 1.1.1970.
end_time
End time for history display in seconds since 1.1.1970.
interval
Minimum time between two displayed events, zero to display all events.
Return value
HS_SUCCESS�Successful completion��HS_FILE_ERROR�History file cannot be opened��Remarks
This function prints a header line containing event variables and one line for each event. Values are separated with tabs so they can be read in easily with Excel� XE "Excel" � and be converted to data-over-time plots.
The start and end time can be generated with the standard C time functions like mktime() and time(). To skip events in the display, the interval can be set to a nonzero value. A value of 3600 displays events separated at least by one hour.
Example
time_t tm;�� time(&tm);� hs_dump(1, tm-3600, tm, 0);
�hs_enum_events
Enumerates events in a history file.
Syntax
hs_enum_events(DWORD time, � DEF_RECORD *buffer,� DWORD *buffer_size)
Parameters
time
Time for which events should be enumerated.
buffer
Buffer receiving event definition
buffer_size
Size of definition buffer
Return value
HS_SUCCESS�Successful completion��HS_FILE_ERROR�History file cannot be opened��HS_NO_MEMORY�Buffer too small��Remarks
The event definition records have following format:
typedef struct {� DWORD event_id;� char event_name[NAME_LENGTH];� DWORD def_offset;�} DEF_RECORD;
where def_offset is only used for internal purposes. The definitions can be used to perform an interactive query where event names are selected and the corresponding event ID is used to perform a history display.
The buffer_size parameter contains on input the size of the event definition buffer and contains upon return the number of returned bytes in that buffer.
�hs_enum_tags
Enumerates variables in an event.
Syntax
hs_enum_tags(DWORD time, DWORD event_id,� TAG *buffer, DWORD *buffer_size)
Parameters
time
Time for which event variables should be enumerated
event_id
Event ID for which variables should be enumerated
buffer
Buffer receiving variable tags
buffer_size
Size of tag buffer
Return value
HS_SUCCESS�Successful completion��HS_FILE_ERROR�History file cannot be opened��HS_NO_MEMORY�Buffer too small��Remarks
A tag has following structure:
typedef struct {� char name[NAME_LENGTH];� DWORD type;� DWORD n_data;�} TAG;
where name is the variable name, type is a TID_xxx value and n_data is the number of values in this variable.
The tags can be used to perform an interactive query where variable names are selected for which the history should be displayed.
The buffer_size parameter contains on input the size of the tag buffer and contains upon return the number of returned bytes in that buffer.
�hs_read
Queries the history system.
Syntax
hs_read(DWORD event_id, � DWORD start_time, DWORD end_time, � DWORD interval, � char *var_name, DWORD var_index, � DWORD *time_buffer, DWORD *tbsize, � void *data_buffer, DWORD *dbsize, � DWORD *type, DWORD *n)
Parameters
event_id
ID of event for which history should be returned
start_time
Start time for history query in seconds since 1.1.1970.
end_time
End time for history query in seconds since 1.1.1970.
interval
Minimum time between two returned events, zero to display all events.
var_name
Name of variable to return
var_index
Index of variable in case of array variables
time_buffer
Buffer to which time stamps are written
tbsize
Size of time_buffer in bytes
data_buffer
Buffer to which data values are written
dbsize
Size of data_buffer in bytes
type
Type of variable (TID_xxx value) returned by this function
n
Number of time/value pairs returned by this function and placed into time_buffer and data_buffer
Return value
HS_SUCCESS�Successful completion��HS_FILE_ERROR�History file cannot be opened��HS_WRONG_INDEX�var_index exceeds array size of variable��HS_UNDEFINDED_VAR�var_name not found��HS_TRUNCATED�Buffer is too small, data has been truncated��Remarks
The function returns time/value pairs of variables in a given time/date interval. The start and end time can be generated with the standard C time functions like mktime() and time(). To skip events in the history, the interval can be set to a nonzero value. A value of 3600 returns events separated at least by one hour.
The time_buffer contains time values in seconds since 1.1.1970, and the data_buffer the corresponding variable values. Following example displays the history of the variable “Temperature” for the last hour.
Example
char buffer[10000];�DWORD tbuffer[1000];�DWORD i, size, tbsize, n, type;�char str[256];�INT status;�time_t start_time, end_time;�� time(&end_time);� start_time = end_time-3600;� do� {� size = sizeof(buffer);� tbsize = sizeof(tbuffer);�� /* perform history query */� status = hs_read(1, start_time, end_time, 0,� "Temperature", 0,� tbuffer, &tbsize,� buffer, &size, &type, &n);� if (n == 0)� printf("No variables found for last hour \n",);�� /* print returned values */� for (i=0 ; i<n ; i++)� {� sprintf(str, "%s", ctime(&tbuffer[i])+4);� str[20] = '\t';� db_sprintf(&str[strlen(str)], buffer,� rpc_tid_size(type), i, type);� strcat(str, "\n");� printf(str);� }�� /* if not all data retured, make new query with� start time just after last returned time */� if (status == HS_TRUNCATED)� start_time = tbuffer[n-1] + � (tbuffer[n-1] - tbuffer[n-2]);�� } while (status == HS_TRUNCATED);�}
�hs_set_path
Sets path where history files are written and read.
Syntax
hs_set_path(char *path)
Parameters
path
Directory for history files
Return value
HS_SUCCESS�Successful completion��Remarks
By default, history files are expected in the directory where the application is started. If files are located elsewhere, this function has to be used.
�hs_write_event
Writes a history event.
Syntax
hs_write_event(DWORD event_id, void *event,� DWORD size)
Parameters
event_id
Event ID
event
Address of event
size
Size of event in bytes
Return value
HS_SUCCESS�Successful completion��HS_UNDEFINED_EVENT�Event has not been defined via hs_define_event()��HS_FILE_ERROR�History file cannot be written, maybe disk full��Remarks
Events are identified by their ID which is used in the event definition with hs_define_event(). The event contents has to correspond to the previous definition of the event, otherwise the history system gets corrupted. Event can be written at a rate of typically a few megabytes per second.
Example
See hs_define_event()
�rpc_client_call
Performs a RPC call on a remote client.
Syntax
rpc_client_call(HNDLE conn_handle, � const INT routine_id, � ...)
Parameters
conn_handle
Connection handle obtained via cm_client_connect()
routine_id
RPC ID of routine to call
...
Optional parameter list for RPC call
Return value
RPC_SUCCESS�Successful completion��RPC_NET_ERROR�Network error��RPC_NO_CONNECTION�conn_handle doesn’t belong to an active connection��RPC_TIMEOUT�RPC timeout��RPC_INVALID_ID�Invalid RPC ID��RPC_EXCEED_BUFFER�Parameters don’t fit in network buffer��Remarks
Instead of using an interface definition language (IDL), MIDAS directly defined RPC parameters in the C source code. The routine ID is defined in mrpc.h, the parameters are defined in mrpc.c. These files can be extended by user routines. Care has to be taken that the same files are linked to both programs which do a RPC communication.
Instead of generating stubs automatically via an IDL compiler, they have to be programmed manually. The rpc_client_call() function can take all parameters directly. The server side has to decode parameters manually with the macros C<type> and CP<type> for values and pointers, respectively. Of course a little server stub and client stub can be written manually.
The program which implements a RPC function (the “RPC server”) must register the function to be called with cm_register_function(). This creates an entry in the ODB under /System/Clients/<pid>/RPC/<RPC ID>. The program which calls the RPC routine (“RPC client”) can then issue a rpc_client_call() with the new RPC ID.
If a function on the RPC server takes more than 10 seconds to execute, the RPC time-out value can be increased with rpc_set_option(conn_handle, RPC_OTIMEOUT, ms) where ms is the new time-out in milliseconds.
Following example shows all components necessary to issue a RPC call to a function mytest() on the remote client “RPC Test Server”. Which simply multiplies an integer and a double value and returns them.
Example
In mrpc.h
#define RPC_MYTEST 20000
In mrpc.c
{ RPC_MYTEST,� {{TID_INT, RPC_IN},� {TID_DOUBLE, RPC_IN},� {TID_INT, RPC_OUT},� {TID_DOUBLE, RPC_OUT},� {0} }},
On the RPC server
INT mytest(INT index, void *prpc_param[])�{�INT a, *c;�double b, *d;�� /* decode parameters with macros */� a = CINT(0);� b = CDOUBLE(1);� c = CPINT(2);� d = CPDOUBLE(3);� � /* do some calculations */� *c = 2*a;� *d = 3*b;�� return RPC_SUCCESS;�}��main() �{� cm_connect_experiment("myhost", "Sample",� "RPC Test Server", NULL);� cm_register_function(RPC_MYTEST, mytest);�...� <loop>�...�
On the RPC client
HNDLE hconn;�INT a, c;�double b, d;�� ...� cm_connect_client("RPC Test Server", &hconn);�� rpc_client_call(hconn, RPC_MYTEST, a, b, &c, &d);� printf("%d %lf\n", c, d);�� cm_disconnect_client(hconn);� ...
�rpc_convert_data
Converts data between different computers.
Syntax
rpc_convert_data(void *data, INT tid, � INT flags, INT total_size,� INT convert_flags)
Parameters
data
Pointer to data to convert
tid
Data type. One of TID_xxx from midas.h
flags
RPC_OUTGOING for outgoing data, zero else.
total_size
Size in bytes of data to convert
convert_flags
Conversion flags obtained with rpc_get_convert_flags(). Can be a bit combination of CF_ENDIAN for little endian/big endian conversion and CF_VAX2IEEE and CF_IEEE2VAX for floating point conversion between VAX G format and IEEE format.
Return value
void���Remarks
This function can be used to convert an array of values of the same type. For individual values rpc_convert_single() can be used.
�rpc_convert_single
Converts single values between different computers.
Syntax
rpc_convert_single(void *data, INT tid,� INT flags,� INT convert_flags)
Parameters
data
Pointer to data to convert
tid
Data type. One of TID_xxx from midas.h
flags
RPC_OUTGOING for outgoing data, zero else.
convert_flags
Conversion flags obtained with rpc_get_convert_flags(). Can be a bit combination of CF_ENDIAN for little endian/big endian conversion and CF_VAX2IEEE and CF_IEEE2VAX for floating point conversion between VAX G format and IEEE format.
Return value
void���Remarks
This function can be used to convert individual values between different computers. The RPC system of MIDAS takes care that all function parameters are converted correctly between different computers (e.g. little/big endian conversion). Some function however send data over the network whose type is unknown to the system. One example is the function bm_send_event() which sends an event which contains a data area whose contents can be user defined (however the event header is converted automatically). For events in MIDAS bank format one can use the function bk_swap(), for events in YBOS format one can use ybos_swap_event(). For events in any other format the user has to take care that the data is converted correctly.
Example
INT cflags;�char event[1000];�INT a, b[10];�� ...� /* get current convert flags */� cflags = rpc_get_convert_flags();�� /* read data */� a = <...>� b = <...>�� /* convert data */� rpc_convert_single(&a, TID_INT, RPC_OUTGOING,� cflags);� rpc_convert_data(b, TID_INT, RPC_OUTGOING,� sizeof(b), cflags);�� /* generate and send event */� bm_compose_event(...);� memcpy(&event[...], a, sizeof(a));� memcpy(&event[...], b, sizeof(b));� bm_send_event(...);� ...
�rpc_flush_event
Flushes RPC buffer used by rpc_send_event().
Syntax
rpc_flush_event()
Parameters
none
Return value
RPC_SUCCESS�Successful completion��RPC_NET_ERROR�Network error��Remarks
Since rpc_send_event() uses a buffer when sending events over the standard RPC connection, this buffer must be flushed before any other RPC function can be called and before run transitions. This is done automatically in the front-end framework mfe.c.
�rpc_get_convert_flags
Returns convert flags between local computer and remote MIDAS server.
Syntax
rpc_get_convert_flags(INT convert_flags)
Parameters
convert_flags
Returned convert flags. Can be a bit combination of CF_ENDIAN, CF_VAX2IEEE and CF_IEEE2VAX.
Return value
void���Remarks
See rpc_convert_single().
Example
See rpc_convert_single().
�rpc_send_event
Sends an event to the back-end.
Syntax
rpc_send_event(INT buffer_handle,� void *source,� INT buffer_size,� INT async_flag)
Parameters
buffer_handle
Buffer handle obtained via bm_open_buffer()
source
Address of event buffer
buffer_size
Size of event including event header in bytes
async_flag
Synchronous/asynchronous flag. If FALSE, the function blocks if the event cannot be sent over the network. If TRUE, the function uses non-blocking socket operations and returns immediately with a value of BM_ASYNC_RETURN without sending the event over the network.
Return value
BM_SUCCESS�Successful completion��BM_INVALID_HANDLE�Invalid buffer handle��BM_INVALID_PARAM�Buffer size doesn’t match data size in event header��BM_ASYNC_RETURN�Routine called with async_flag == TRUE and event cannot be sent over the network��RPC_EXCEED_BUFFER�Event is too large for network buffer or event buffer. One has to increase MAX_EVENT_SIZE in midas.h and recompile.��Remarks
Events can be sent over the network either with a RPC call to bm_send_event() or with rpc_send_event(). The latter function bypasses the standard RPC layer, uses asynchronous and buffered RPCs to improve the network speed. While one can achieve only about 400kB/sec transfer speed over standard Ethernet with bm_send_event(), rpc_send_event() yields in typically 980kB/sec.
Example
See bm_send_event(), substitue bm_send_even() by rpc_send_event().
�ss_clear_screen
Clears the screen.
Syntax
ss_clear_screen()
Parameters
none
Return value
void���Remarks
The function uses console output functions under Windows NT and VT100 escape sequences under UNIX and VxWorks.
�ss_directio_xxx
Functions to perform direct port input/output under Windows NT
Syntax
ss_directio_init()�ss_directio_exit()�ss_directio_give_port(INT start, INT end)�ss_directio_lock_port(INT start, INT end)
Parameters
start
First port to open/lock
end
Last port to open/lock
Return value
SS_SUCCESS�Successful completion��SS_NO_DRIVER�DirectIO driver not installed��Remarks
These functions are an interface to the DirectIO driver under Windows NT. Using this driver, a range of ports can be unlocked so that they can be accessed by the application. Normally, direct hardware IO is denied under Windows NT.
Before these functions can be used, the DirectIO driver must be installed. This can be done by executing the setup.bat script in the nt\directio directory of the MIDAS distribution.
Initially the function ss_directio_init() has to be called. Then the functions ss_directio_give_port() and ss_directio_lock_port() can be used to unlock/lock ranges of ports. The last call should be a ss_directio_exit(). Note that unlocked ports are still available after ss_directio_exit() has been called.
Once a port has been unlocked, it can be accessed using the 80x86 assembler commands inp and outp. Under MS Visual C++, they are called _outp(port, data) and _inp(port). This method is as fast as under MS-DOS since no transitions between user mode and kernel mode have to be performed in the CPU. Many PC interfaces like PC-CAMAC or DAQ boards can be programmed through ports, so no Windows NT driver has to be written for those boards.
Care has to be taken not to corrupt the system. If system ports (like the harddisk controller) are accessed, Windows NT can crash.
Following example requests the PC speaker ports 0x42, 0x43 and 0x61 to play music.
Example
#include <midas.h>���typedef struct {� short int pitch;� short int duration;�} NOTE;��/* Table of notes */�NOTE notes[] = {{14, 500}, {16, 500},� {12, 500}, {0, 500}, {7, 1000}};��/* Set PC's speaker frequency in Hz */�void setfreq(int hz)�{� hz = 1193180 / hz;� _outp(0x43, 0xb6);� _outp(0x42, hz);� _outp(0x42, hz >> 8);�}��/* Play a note */�void playnote(NOTE note)�{� /* start speaker */� _outp(0x61, _inp(0x61) | 0x03);�� setfreq((int)(400 * � pow(2, note.pitch / 2.0)));� Sleep(note.duration);� � /* stop speaker */� _outp(0x61, _inp(0x61) & ~0x03);�}��main()�{�int i;�� ss_directio_init();� ss_directio_give_port(0x42, 0x43);� ss_directio_give_port(0x61, 0x61);� ss_directio_exit();�� for(i=0; i < sizeof(notes)/sizeof(int); ++i)� playnote(notes[i]);�� return 0;�}
�ss_getchar
Reads a single character, returns immediately if no character available.
Syntax
ss_getchar(BOOL reset)
Parameters
reset
If TRUE, resets terminal to standard mode and returns zero.
Return value
0�No character available��CH_XXX�Special character as defined in midas.h��n�ASCII code for normal character��-1�Function not available on this operating system��Remarks
This function is similar to the standard C function getchar(), except it returns immediately if no key is pressed. This makes it possible to use it in the event loop of a program.
Under UNIX, the function uses the non-canonical (raw) terminal mode with the tcsetattr() function. It is necessary to reset the terminal no normal (canonical) mode by calling ss_getchar(TRUE) before a program exits.
Special characters like cursor keys are encoded differently under UNIX and under Windows NT. To have common codes, special characters are translated to common CH_XXX codes which are the same on all operating systems.
Example
main()�{�INT ch, status;�� ...� do� {� ch = ss_getchar(0);� if (ch == ‘!’)� break;�� status = cm_yield(100);� } while (status != SS_ABORT &&� status != RPC_SHUTDOWN);�� /* reset terminal mode */� ss_getchar(TRUE);� ...�}�
�ss_getpass
Reads a password without terminal echo.
Syntax
char *ss_getpass(char *prompt)
Parameters
prompt
Prompt which is printed before password is read in
Return value
char�Password string��Remarks
The function is similar to the UNIX function getpass(), but also works under Windows NT and MS-DOS.
Example
strcpy(password, ss_getpass("Enter password"));
�ss_gets
Reads in a single line.
Syntax
char *ss_gets(char *string)
Parameters
string
Returned string
Return value
char�Returned string��Remarks
The function is equivalent to the standard C function gets(), but it cannot be interrupted by an alarm() signal, which happens with the watchdog function under Sun Solaris.
�ss_kbhit
Checks if a key is pressed.
Syntax
BOOL ss_kbhit()
Parameters
none
Return value
BOOL�TRUE if key is pressed��Remarks
The function can be used to exit loops by a keystroke.
�ss_millitime
Returns the current time in milliseconds.
Syntax
DWORD ss_millitime()
Parameters
None
Return value
DWORD�Time in milliseconds��Remarks
This function can be used to calculate time differences. The time origin is undefined (usually time zero is when the computer is started).
Example
DWORD start, stop:�� start = ss_millitime();�� < do operations >�� stop = ss_millitime();�� printf("Operation took %1.3lf seconds\n",� (stop-start)/1000.0);
�ss_printf
Prints a string at a certain X/Y position on the screen.
Syntax
ss_printf(INT x, INT y,� const char *format, ...)
Parameters
x
Horizontal position
y
Vertical position
format
Format string similar to printf()
...
Optional parameters to print
Return value
void���Remarks
X and Y start from zero, the upper left corner of the screen is 0/0. The format and optional parameters are passed to sprintf().
The function uses console output functions under Windows NT and VT100 escape sequences under UNIX and VxWorks.
Example
ss_printf(10, 10, "Run %d started", run_number);
�ss_sleep
Suspends the calling process for a number of milliseconds.
Syntax
INT ss_sleep(INT time)
Parameters
time
Time in milliseconds to sleep
Return value
CM_SUCCESS�Successful completion��Remarks
The function is similar to the sleep() function, but has a resolution of one milliseconds. It uses the socket select() function with a time-out.
�ss_tape_xxx
Magnetic tape functions.
Syntax
INT ss_tape_open(char *name, INT *channel)�INT ss_tape_close(INT channel)�INT ss_tape_status(char *name)�INT ss_tape_write(INT channel, void *data, INT n)�INT ss_tape_read(INT channel, void *data,INT *n)�INT ss_tape_write_eof(INT channel)�INT ss_tape_fskip(INT channel, INT count)�INT ss_tape_rskip(INT channel, INT count)�INT ss_tape_rewind(INT channel)�INT ss_tape_spool(INT channel)�INT ss_tape_mount(INT channel)�INT ss_tape_unmount(INT channel)
Parameters
name
Tape name
channel
Tape channel handle
data
Pointer to data
n
Number of bytes to write/read
count
Number of files/records to skip
Return value
SS_SUCCESS�Successful completion��errno�Error number of underlying operating system��Remarks
These functions allow to handle tapes in the same way under UNIX and Windows NT. First, a tape channel has to be opened with ss_tape_open(). The returned channel can be used in the other operations. The count can spool the tape forward a number of records (rskip) or files (fskip) or backward if negative. ss_tape_spool() spools a tape to the end of recorded data. This function is not available for all tape drives.
Tape names are like /dev/nrmt0 under UNIX and like \\.\tape0 under Windows NT. Following example opens a tape, reads a buffer and then rewinds the tape.
Example
INT channel;��ss_tape_open("\\\\.\\tape0", &channel);�ss_tape_read(
�ss_time
Return time in seconds since 1.1.1970 0:00 UTC.
Syntax
DWORD ss_time()
Parameters
None
Return value
DWORD�Time in seconds��Remarks
The function is similar to the standard C function time().
�Appendix � SEQ Appendix * ALPHABETIC �H�: Frequently Asked Questions (FAQ)
<to be written>
� INDEX \e "	" \h "A" \c "2" ��Index
A
active flag	36
alarm	31
analyzer	1, 7
analyzer parameters	7, 40
analyzer.c	41
ASCII representation	22, 25, 26, 130
auto restart	35
B
back-end	2, 16
banks	23
big endian	32
bk_close	24
bk_create	23
bk_init	23
bk_size	24
bm_open_buffer	30
buffer manager	3
byte limit	37
byte swapping	32
bytes written total	36
C
calibration events	21
calibration run	34
callback routine	4, 30
CAMAC	25
CERN library	7, 11, 13
channel type	36
channels	36
chat	39
class driver	50
clear histograms	44
clear histos flag	45
client name	29
clients	3
cm_msg	70
cm_yield	30
consumers	3
crashed client	4
crashed front-end	47
D
data dir	35
data format	21
data logger	1, 6
db_create_record	26
db_get_value	54
db_open_record	26
db_set_value	54
DEC UNIX	9
demand array	49
device driver	50
directories	4
E
edit on start	34
enable switch	21
environment variable
MIDAS_DIR	18
MIDAS_EXPT_NAME	19
MIDAS_SERVER_HOST	19
path	13
EQ_INTERRUPT	21
EQ_PERIODIC	21
EQ_POLLED	21
equipment	20
ESONE standard	25
Ethernet	2
event	20
builder	21
header	20
ID	20
limit	22
request	30
event filter	37, 42
event limit	37
event.h	25, 40
events	6
interrupt	21
may events	30
must events	30
periodic	21
polled	21
Exabyte tapes	33
Excel	62, 168
experiment name	16, 29
experiments	5, 18
exptab	5, 14
F
Fast Ethernet	2
FIFO	3
files written	36
format
ASCII	37
DUMP	37
FIXED	22
MIDAS	23
YBOS	24
format key	37
FORTRAN	32, 64
fragments	21
FreeBSD	9
front-end	1, 6
frontend
crashed	47
frontend.c	20
FTP mode	36
G
GET_ALL	30
GET_SOME	30
GNU make	10
GNU tar	10
GPIB	50
gunzip	10
H
hardware parameters	25
hardware trigger	16
HBOOK	2, 7
HBOOK RZ files	7
histo dump flag	44
histograms, accumulated	45
history system	8, 22
hostname	16, 29
hot-link	4, 49
HVEdit	53
I
inetd	5, 12
interrupt	16
interrupt_configure	21
K
key	4
L
LAM	16
last.odb	47
link, symbolic	34
Linux	2, 9
little endian	32
log book, electronic	39
log messages	37
logger settings	35
M
mana.c	41
mdump utility	58
measured array	49
message file	35
message system	4, 38
mfcna utility	63
mfe.c	20
mhist utility	61
MIDAS	1
analyzer	39
binary files	45
components	3
home page	1
library	3, 31
overview	2
server	4, 5
mlogger	35
module	40
monitoring a run	38
MS-DOS	14
mserver	11
mstat	38
mstat utility	57
mtape	48
mtape utility	59
N
N-tuples	7
column-wise	45
online	42
row wise	45, 46
O
ODB Dump	35
ODB Dump File	35
ODB Dump flag	37
ODB full	47
ODBEdit	7, 9, 16, 55
off-line	7
off-line analysis	45
online database	4
OSF/1	9
P
password	19
Paul Scherrer Institute	1
pause	33
PAW	2
PAWC_DEFINE	41
PC/TCP	14
physics run	34
producers	3
R
remote access	5
remote procedure call	5
restricting access	19
resume	33
rewind	36
rhosts	19
RPC	5
RS232	25, 50
run control	1, 7, 33
run modes	34
run number	33
run parameters	4
run states	5
runinfo	33
RZ file	45
S
sample experiment	9
sampling type	30
scaler events	16
serial number	29
shared memory	3, 4, 43
show open records	28
shutdown	30
slow control system	7, 49
Solaris	9
stage, analyzer	40
stages	7
start	33
state model	5
stop	33
sub-directories	4
super-user	11
system buffer	21
T
talk	39
tape capacity	37
tape device	36
tape message	35
tcsh	16
telnet	7
third level trigger	24
timer	31
transition in progress flag	34
trigger events	16
TRIUMF	1
U
Ultrix	9
V
variables	38
VxWorks	2, 16
W
watchdog system	4, 31
Windows NT	2
write data flag	35
Z
Z library	10
zero suppression	23
��
� The histogramming package HBOOK is part of the CERN library and can be found at http://wwwcn.cern.ch/asdoc/hbook/HBOOKMAIN.html
� Physics Analysis Workstation (PAW) is part of the CERN library and can be found at http://asdwww.cern.ch/pl/paw/
� inetd is the UNIX Internet daemon. Type “man inetd” to learn more about it.
� The SOSS server can be found under ftp://pibeta.psi.ch/pub/midas/sossntr3.zip

� PAGE �194�		� STYLEREF "heading 2" * MERGEFORMAT �Appendix G: Alphabetical MIDAS Library Reference�

Chapter � STYLEREF \n "heading 1" * MERGEFORMAT �7�: � STYLEREF "heading 1" * MERGEFORMAT �Appendix�		� PAGE �195�

